Inflation in Supergravity from Field Redefinitions
Supergravity (SUGRA) theories are specified by a few functions, most notably the real Kähler function denoted by <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi>...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-05-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/12/5/806 |
id |
doaj-b1c081fe5a314d479600483cd5cf124c |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Michał Artymowski Ido Ben-Dayan |
spellingShingle |
Michał Artymowski Ido Ben-Dayan Inflation in Supergravity from Field Redefinitions Symmetry supergravity cosmic inflation Kähler geometry |
author_facet |
Michał Artymowski Ido Ben-Dayan |
author_sort |
Michał Artymowski |
title |
Inflation in Supergravity from Field Redefinitions |
title_short |
Inflation in Supergravity from Field Redefinitions |
title_full |
Inflation in Supergravity from Field Redefinitions |
title_fullStr |
Inflation in Supergravity from Field Redefinitions |
title_full_unstemmed |
Inflation in Supergravity from Field Redefinitions |
title_sort |
inflation in supergravity from field redefinitions |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2020-05-01 |
description |
Supergravity (SUGRA) theories are specified by a few functions, most notably the real Kähler function denoted by <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>T</mi> <mo>¯</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>K</mi> <mo>+</mo> <mo form="prefix">log</mo> <msup> <mrow> <mo>|</mo> <mi>W</mi> <mo>|</mo> </mrow> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula>, where K is a real Kähler potential, and W is a holomorphic superpotential. A field redefinition <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>→</mo> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> changes neither the theory nor the Kähler geometry. Similarly, the Kähler transformation, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>→</mo> <mi>K</mi> <mo>+</mo> <msub> <mi>f</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mover accent="true"> <mi>f</mi> <mo>¯</mo> </mover> <mn>2</mn> </msub> <mo>,</mo> <mi>W</mi> <mo>→</mo> <msup> <mi>e</mi> <mrow> <mo>−</mo> <msub> <mi>f</mi> <mn>2</mn> </msub> </mrow> </msup> <mi>W</mi> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula> is holomorphic and leaves G and hence the theory and the geometry invariant. However, if we perform a field redefinition only in <inline-formula> <math display="inline"> <semantics> <mrow> <mi>K</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>T</mi> <mo>¯</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>→</mo> <mi>K</mi> <mrow> <mo>(</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mover accent="true"> <mi>T</mi> <mo>¯</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, while keeping the same superpotential <inline-formula> <math display="inline"> <semantics> <mrow> <mi>W</mi> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, we get a different theory, as G is not invariant under such a transformation while maintaining the same Kähler geometry. This freedom of choosing <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> allows construction of an infinite number of new theories given a fixed Kähler geometry and a predetermined superpotential W. Our construction generalizes previous ones that were limited by the holomorphic property of <i>W</i>. In particular, it allows for novel inflationary SUGRA models and particle phenomenology model building, where the different models correspond to different choices of field redefinitions. We demonstrate this possibility by constructing several prototypes of inflationary models (hilltop, Starobinsky-like, plateau, log-squared and bell-curve) all in flat Kähler geometry and an originally renormalizable superpotential <i>W</i>. The models are in accord with current observations and predict <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>∈</mo> <mo>[</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> <mo>,</mo> <mn>0</mn> <mo>.</mo> <mn>06</mn> <mo>]</mo> </mrow> </semantics> </math> </inline-formula> spanning several decades that can be easily obtained. In the bell-curve model, there also exists a built-in gravitational reheating mechanism with <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mi>R</mi> </msub> <mo>∼</mo> <mi mathvariant="script">O</mi> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>7</mn> </msup> <mi>G</mi> <mi>e</mi> <mi>V</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>. |
topic |
supergravity cosmic inflation Kähler geometry |
url |
https://www.mdpi.com/2073-8994/12/5/806 |
work_keys_str_mv |
AT michałartymowski inflationinsupergravityfromfieldredefinitions AT idobendayan inflationinsupergravityfromfieldredefinitions |
_version_ |
1724576253167534080 |
spelling |
doaj-b1c081fe5a314d479600483cd5cf124c2020-11-25T03:30:19ZengMDPI AGSymmetry2073-89942020-05-011280680610.3390/sym12050806Inflation in Supergravity from Field RedefinitionsMichał Artymowski0Ido Ben-Dayan1Physics Department, Ariel University, Ariel 40700, IsraelPhysics Department, Ariel University, Ariel 40700, IsraelSupergravity (SUGRA) theories are specified by a few functions, most notably the real Kähler function denoted by <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>T</mi> <mo>¯</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>K</mi> <mo>+</mo> <mo form="prefix">log</mo> <msup> <mrow> <mo>|</mo> <mi>W</mi> <mo>|</mo> </mrow> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula>, where K is a real Kähler potential, and W is a holomorphic superpotential. A field redefinition <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>→</mo> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> changes neither the theory nor the Kähler geometry. Similarly, the Kähler transformation, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>→</mo> <mi>K</mi> <mo>+</mo> <msub> <mi>f</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mover accent="true"> <mi>f</mi> <mo>¯</mo> </mover> <mn>2</mn> </msub> <mo>,</mo> <mi>W</mi> <mo>→</mo> <msup> <mi>e</mi> <mrow> <mo>−</mo> <msub> <mi>f</mi> <mn>2</mn> </msub> </mrow> </msup> <mi>W</mi> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula> is holomorphic and leaves G and hence the theory and the geometry invariant. However, if we perform a field redefinition only in <inline-formula> <math display="inline"> <semantics> <mrow> <mi>K</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>T</mi> <mo>¯</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>→</mo> <mi>K</mi> <mrow> <mo>(</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mover accent="true"> <mi>T</mi> <mo>¯</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, while keeping the same superpotential <inline-formula> <math display="inline"> <semantics> <mrow> <mi>W</mi> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, we get a different theory, as G is not invariant under such a transformation while maintaining the same Kähler geometry. This freedom of choosing <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> allows construction of an infinite number of new theories given a fixed Kähler geometry and a predetermined superpotential W. Our construction generalizes previous ones that were limited by the holomorphic property of <i>W</i>. In particular, it allows for novel inflationary SUGRA models and particle phenomenology model building, where the different models correspond to different choices of field redefinitions. We demonstrate this possibility by constructing several prototypes of inflationary models (hilltop, Starobinsky-like, plateau, log-squared and bell-curve) all in flat Kähler geometry and an originally renormalizable superpotential <i>W</i>. The models are in accord with current observations and predict <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>∈</mo> <mo>[</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> <mo>,</mo> <mn>0</mn> <mo>.</mo> <mn>06</mn> <mo>]</mo> </mrow> </semantics> </math> </inline-formula> spanning several decades that can be easily obtained. In the bell-curve model, there also exists a built-in gravitational reheating mechanism with <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mi>R</mi> </msub> <mo>∼</mo> <mi mathvariant="script">O</mi> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>7</mn> </msup> <mi>G</mi> <mi>e</mi> <mi>V</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>.https://www.mdpi.com/2073-8994/12/5/806supergravitycosmic inflationKähler geometry |