Inflation in Supergravity from Field Redefinitions

Supergravity (SUGRA) theories are specified by a few functions, most notably the real Kähler function denoted by <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi>...

Full description

Bibliographic Details
Main Authors: Michał Artymowski, Ido Ben-Dayan
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/5/806
id doaj-b1c081fe5a314d479600483cd5cf124c
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Michał Artymowski
Ido Ben-Dayan
spellingShingle Michał Artymowski
Ido Ben-Dayan
Inflation in Supergravity from Field Redefinitions
Symmetry
supergravity
cosmic inflation
Kähler geometry
author_facet Michał Artymowski
Ido Ben-Dayan
author_sort Michał Artymowski
title Inflation in Supergravity from Field Redefinitions
title_short Inflation in Supergravity from Field Redefinitions
title_full Inflation in Supergravity from Field Redefinitions
title_fullStr Inflation in Supergravity from Field Redefinitions
title_full_unstemmed Inflation in Supergravity from Field Redefinitions
title_sort inflation in supergravity from field redefinitions
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2020-05-01
description Supergravity (SUGRA) theories are specified by a few functions, most notably the real Kähler function denoted by <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>T</mi> <mo>¯</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>K</mi> <mo>+</mo> <mo form="prefix">log</mo> <msup> <mrow> <mo>|</mo> <mi>W</mi> <mo>|</mo> </mrow> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula>, where K is a real Kähler potential, and W is a holomorphic superpotential. A field redefinition <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>→</mo> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> changes neither the theory nor the Kähler geometry. Similarly, the Kähler transformation, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>→</mo> <mi>K</mi> <mo>+</mo> <msub> <mi>f</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mover accent="true"> <mi>f</mi> <mo>¯</mo> </mover> <mn>2</mn> </msub> <mo>,</mo> <mi>W</mi> <mo>→</mo> <msup> <mi>e</mi> <mrow> <mo>−</mo> <msub> <mi>f</mi> <mn>2</mn> </msub> </mrow> </msup> <mi>W</mi> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula> is holomorphic and leaves G and hence the theory and the geometry invariant. However, if we perform a field redefinition only in <inline-formula> <math display="inline"> <semantics> <mrow> <mi>K</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>T</mi> <mo>¯</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>→</mo> <mi>K</mi> <mrow> <mo>(</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mover accent="true"> <mi>T</mi> <mo>¯</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, while keeping the same superpotential <inline-formula> <math display="inline"> <semantics> <mrow> <mi>W</mi> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, we get a different theory, as G is not invariant under such a transformation while maintaining the same Kähler geometry. This freedom of choosing <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> allows construction of an infinite number of new theories given a fixed Kähler geometry and a predetermined superpotential W. Our construction generalizes previous ones that were limited by the holomorphic property of <i>W</i>. In particular, it allows for novel inflationary SUGRA models and particle phenomenology model building, where the different models correspond to different choices of field redefinitions. We demonstrate this possibility by constructing several prototypes of inflationary models (hilltop, Starobinsky-like, plateau, log-squared and bell-curve) all in flat Kähler geometry and an originally renormalizable superpotential <i>W</i>. The models are in accord with current observations and predict <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>∈</mo> <mo>[</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> <mo>,</mo> <mn>0</mn> <mo>.</mo> <mn>06</mn> <mo>]</mo> </mrow> </semantics> </math> </inline-formula> spanning several decades that can be easily obtained. In the bell-curve model, there also exists a built-in gravitational reheating mechanism with <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mi>R</mi> </msub> <mo>∼</mo> <mi mathvariant="script">O</mi> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>7</mn> </msup> <mi>G</mi> <mi>e</mi> <mi>V</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>.
topic supergravity
cosmic inflation
Kähler geometry
url https://www.mdpi.com/2073-8994/12/5/806
work_keys_str_mv AT michałartymowski inflationinsupergravityfromfieldredefinitions
AT idobendayan inflationinsupergravityfromfieldredefinitions
_version_ 1724576253167534080
spelling doaj-b1c081fe5a314d479600483cd5cf124c2020-11-25T03:30:19ZengMDPI AGSymmetry2073-89942020-05-011280680610.3390/sym12050806Inflation in Supergravity from Field RedefinitionsMichał Artymowski0Ido Ben-Dayan1Physics Department, Ariel University, Ariel 40700, IsraelPhysics Department, Ariel University, Ariel 40700, IsraelSupergravity (SUGRA) theories are specified by a few functions, most notably the real Kähler function denoted by <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>T</mi> <mo>¯</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>K</mi> <mo>+</mo> <mo form="prefix">log</mo> <msup> <mrow> <mo>|</mo> <mi>W</mi> <mo>|</mo> </mrow> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula>, where K is a real Kähler potential, and W is a holomorphic superpotential. A field redefinition <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>→</mo> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> changes neither the theory nor the Kähler geometry. Similarly, the Kähler transformation, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>→</mo> <mi>K</mi> <mo>+</mo> <msub> <mi>f</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mover accent="true"> <mi>f</mi> <mo>¯</mo> </mover> <mn>2</mn> </msub> <mo>,</mo> <mi>W</mi> <mo>→</mo> <msup> <mi>e</mi> <mrow> <mo>−</mo> <msub> <mi>f</mi> <mn>2</mn> </msub> </mrow> </msup> <mi>W</mi> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula> is holomorphic and leaves G and hence the theory and the geometry invariant. However, if we perform a field redefinition only in <inline-formula> <math display="inline"> <semantics> <mrow> <mi>K</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>T</mi> <mo>¯</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>→</mo> <mi>K</mi> <mrow> <mo>(</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mover accent="true"> <mi>T</mi> <mo>¯</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, while keeping the same superpotential <inline-formula> <math display="inline"> <semantics> <mrow> <mi>W</mi> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, we get a different theory, as G is not invariant under such a transformation while maintaining the same Kähler geometry. This freedom of choosing <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> allows construction of an infinite number of new theories given a fixed Kähler geometry and a predetermined superpotential W. Our construction generalizes previous ones that were limited by the holomorphic property of <i>W</i>. In particular, it allows for novel inflationary SUGRA models and particle phenomenology model building, where the different models correspond to different choices of field redefinitions. We demonstrate this possibility by constructing several prototypes of inflationary models (hilltop, Starobinsky-like, plateau, log-squared and bell-curve) all in flat Kähler geometry and an originally renormalizable superpotential <i>W</i>. The models are in accord with current observations and predict <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>∈</mo> <mo>[</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> <mo>,</mo> <mn>0</mn> <mo>.</mo> <mn>06</mn> <mo>]</mo> </mrow> </semantics> </math> </inline-formula> spanning several decades that can be easily obtained. In the bell-curve model, there also exists a built-in gravitational reheating mechanism with <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mi>R</mi> </msub> <mo>∼</mo> <mi mathvariant="script">O</mi> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>7</mn> </msup> <mi>G</mi> <mi>e</mi> <mi>V</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>.https://www.mdpi.com/2073-8994/12/5/806supergravitycosmic inflationKähler geometry