Probing the Ion Binding Site in a DNA Holliday Junction Using Förster Resonance Energy Transfer (FRET)
Holliday Junctions are critical DNA intermediates central to double strand break repair and homologous recombination. The junctions can adopt two general forms: open and stacked-X, which are induced by protein or ion binding. In this work, fluorescence spectroscopy, metal ion luminescence and thermo...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2016-03-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | http://www.mdpi.com/1422-0067/17/3/366 |
id |
doaj-b1b52ba67ef047d59edc6496583f0569 |
---|---|
record_format |
Article |
spelling |
doaj-b1b52ba67ef047d59edc6496583f05692020-11-24T21:10:33ZengMDPI AGInternational Journal of Molecular Sciences1422-00672016-03-0117336610.3390/ijms17030366ijms17030366Probing the Ion Binding Site in a DNA Holliday Junction Using Förster Resonance Energy Transfer (FRET)Jacob L. Litke0Yan Li1Laura M. Nocka2Ishita Mukerji3Department of Molecular Biology and Biochemistry and Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459-0175, USADepartment of Molecular Biology and Biochemistry and Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459-0175, USADepartment of Molecular Biology and Biochemistry and Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459-0175, USADepartment of Molecular Biology and Biochemistry and Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459-0175, USAHolliday Junctions are critical DNA intermediates central to double strand break repair and homologous recombination. The junctions can adopt two general forms: open and stacked-X, which are induced by protein or ion binding. In this work, fluorescence spectroscopy, metal ion luminescence and thermodynamic measurements are used to elucidate the ion binding site and the mechanism of junction conformational change. Förster resonance energy transfer measurements of end-labeled junctions monitored junction conformation and ion binding affinity, and reported higher affinities for multi-valent ions. Thermodynamic measurements provided evidence for two classes of binding sites. The higher affinity ion-binding interaction is an enthalpy driven process with an apparent stoichiometry of 2.1 ± 0.2. As revealed by Eu3+ luminescence, this binding class is homogeneous, and results in slight dehydration of the ion with one direct coordination site to the junction. Luminescence resonance energy transfer experiments confirmed the presence of two ions and indicated they are 6–7 Å apart. These findings are in good agreement with previous molecular dynamics simulations, which identified two symmetrical regions of high ion density in the center of stacked junctions. These results support a model in which site-specific binding of two ions in close proximity is required for folding of DNA Holliday junctions into the stacked-X conformation.http://www.mdpi.com/1422-0067/17/3/366Holliday junctionsnucleic acidsFRETion-bindinglanthanide luminescence |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jacob L. Litke Yan Li Laura M. Nocka Ishita Mukerji |
spellingShingle |
Jacob L. Litke Yan Li Laura M. Nocka Ishita Mukerji Probing the Ion Binding Site in a DNA Holliday Junction Using Förster Resonance Energy Transfer (FRET) International Journal of Molecular Sciences Holliday junctions nucleic acids FRET ion-binding lanthanide luminescence |
author_facet |
Jacob L. Litke Yan Li Laura M. Nocka Ishita Mukerji |
author_sort |
Jacob L. Litke |
title |
Probing the Ion Binding Site in a DNA Holliday Junction Using Förster Resonance Energy Transfer (FRET) |
title_short |
Probing the Ion Binding Site in a DNA Holliday Junction Using Förster Resonance Energy Transfer (FRET) |
title_full |
Probing the Ion Binding Site in a DNA Holliday Junction Using Förster Resonance Energy Transfer (FRET) |
title_fullStr |
Probing the Ion Binding Site in a DNA Holliday Junction Using Förster Resonance Energy Transfer (FRET) |
title_full_unstemmed |
Probing the Ion Binding Site in a DNA Holliday Junction Using Förster Resonance Energy Transfer (FRET) |
title_sort |
probing the ion binding site in a dna holliday junction using förster resonance energy transfer (fret) |
publisher |
MDPI AG |
series |
International Journal of Molecular Sciences |
issn |
1422-0067 |
publishDate |
2016-03-01 |
description |
Holliday Junctions are critical DNA intermediates central to double strand break repair and homologous recombination. The junctions can adopt two general forms: open and stacked-X, which are induced by protein or ion binding. In this work, fluorescence spectroscopy, metal ion luminescence and thermodynamic measurements are used to elucidate the ion binding site and the mechanism of junction conformational change. Förster resonance energy transfer measurements of end-labeled junctions monitored junction conformation and ion binding affinity, and reported higher affinities for multi-valent ions. Thermodynamic measurements provided evidence for two classes of binding sites. The higher affinity ion-binding interaction is an enthalpy driven process with an apparent stoichiometry of 2.1 ± 0.2. As revealed by Eu3+ luminescence, this binding class is homogeneous, and results in slight dehydration of the ion with one direct coordination site to the junction. Luminescence resonance energy transfer experiments confirmed the presence of two ions and indicated they are 6–7 Å apart. These findings are in good agreement with previous molecular dynamics simulations, which identified two symmetrical regions of high ion density in the center of stacked junctions. These results support a model in which site-specific binding of two ions in close proximity is required for folding of DNA Holliday junctions into the stacked-X conformation. |
topic |
Holliday junctions nucleic acids FRET ion-binding lanthanide luminescence |
url |
http://www.mdpi.com/1422-0067/17/3/366 |
work_keys_str_mv |
AT jacobllitke probingtheionbindingsiteinadnahollidayjunctionusingforsterresonanceenergytransferfret AT yanli probingtheionbindingsiteinadnahollidayjunctionusingforsterresonanceenergytransferfret AT lauramnocka probingtheionbindingsiteinadnahollidayjunctionusingforsterresonanceenergytransferfret AT ishitamukerji probingtheionbindingsiteinadnahollidayjunctionusingforsterresonanceenergytransferfret |
_version_ |
1716756074908876800 |