Classification of phases for mixed states via fast dissipative evolution

We propose the following definition of topological quantum phases valid for mixed states: two states are in the same phase if there exists a time independent, fast and local Lindbladian evolution driving one state into the other. The underlying idea, motivated by \cite{Konig2014}, is that it takes t...

Full description

Bibliographic Details
Main Authors: Andrea Coser, David Pérez-García
Format: Article
Language:English
Published: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 2019-08-01
Series:Quantum
Online Access:https://quantum-journal.org/papers/q-2019-08-12-174/pdf/
id doaj-b1a0be412a9640f1ad6940ff2642f405
record_format Article
spelling doaj-b1a0be412a9640f1ad6940ff2642f4052020-11-25T02:23:39ZengVerein zur Förderung des Open Access Publizierens in den QuantenwissenschaftenQuantum2521-327X2019-08-01317410.22331/q-2019-08-12-17410.22331/q-2019-08-12-174Classification of phases for mixed states via fast dissipative evolutionAndrea CoserDavid Pérez-GarcíaWe propose the following definition of topological quantum phases valid for mixed states: two states are in the same phase if there exists a time independent, fast and local Lindbladian evolution driving one state into the other. The underlying idea, motivated by \cite{Konig2014}, is that it takes time to create new topological correlations, even with the use of dissipation. We show that it is a good definition in the following sense: (1) It divides the set of states into equivalent classes and it establishes a partial order between those according to their level of ``topological complexity''. (2) It provides a path between any two states belonging to the same phase where observables behave smoothly. We then focus on pure states to relate the new definition in this particular case with the usual definition for quantum phases of closed systems in terms of the existence of a gapped path of Hamiltonians connecting both states in the corresponding ground state path. We show first that if two pure states are in the same phase in the Hamiltonian sense, they are also in the same phase in the Lindbladian sense considered here. We then turn to analyse the reverse implication, where we point out a very different behaviour in the case of symmetry protected topological (SPT) phases in 1D. Whereas at the Hamiltonian level, phases are known to be classified with the second cohomology group of the symmetry group, we show that symmetry cannot give any protection in 1D in the Lindbladian sense: there is only one SPT phase in 1D independently of the symmetry group. We finish analysing the case of 2D topological quantum systems. There we expect that different topological phases in the Hamiltonian sense remain different in the Lindbladian sense. We show this formally only for the $\mathbb{Z}_n$ quantum double models $D(\mathbb{Z}_n)$. Concretely, we prove that, if $m$ is a divisor of $n$, there cannot exist any fast local Lindbladian connecting a ground state of $D(\mathbb{Z}_m)$ with one of $D(\mathbb{Z}_n)$, making rigorous the initial intuition that it takes long time to create those correlations present in the $\mathbb{Z}_n$ case that do not exist in the $\mathbb{Z}_m$ case and that, hence, the $\mathbb{Z}_n$ phase is strictly more complex in the Lindbladian case than the $\mathbb{Z}_m$ phase. We conjecture that such Lindbladian does exist in the opposite direction since Lindbladians can destroy correlations.https://quantum-journal.org/papers/q-2019-08-12-174/pdf/
collection DOAJ
language English
format Article
sources DOAJ
author Andrea Coser
David Pérez-García
spellingShingle Andrea Coser
David Pérez-García
Classification of phases for mixed states via fast dissipative evolution
Quantum
author_facet Andrea Coser
David Pérez-García
author_sort Andrea Coser
title Classification of phases for mixed states via fast dissipative evolution
title_short Classification of phases for mixed states via fast dissipative evolution
title_full Classification of phases for mixed states via fast dissipative evolution
title_fullStr Classification of phases for mixed states via fast dissipative evolution
title_full_unstemmed Classification of phases for mixed states via fast dissipative evolution
title_sort classification of phases for mixed states via fast dissipative evolution
publisher Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
series Quantum
issn 2521-327X
publishDate 2019-08-01
description We propose the following definition of topological quantum phases valid for mixed states: two states are in the same phase if there exists a time independent, fast and local Lindbladian evolution driving one state into the other. The underlying idea, motivated by \cite{Konig2014}, is that it takes time to create new topological correlations, even with the use of dissipation. We show that it is a good definition in the following sense: (1) It divides the set of states into equivalent classes and it establishes a partial order between those according to their level of ``topological complexity''. (2) It provides a path between any two states belonging to the same phase where observables behave smoothly. We then focus on pure states to relate the new definition in this particular case with the usual definition for quantum phases of closed systems in terms of the existence of a gapped path of Hamiltonians connecting both states in the corresponding ground state path. We show first that if two pure states are in the same phase in the Hamiltonian sense, they are also in the same phase in the Lindbladian sense considered here. We then turn to analyse the reverse implication, where we point out a very different behaviour in the case of symmetry protected topological (SPT) phases in 1D. Whereas at the Hamiltonian level, phases are known to be classified with the second cohomology group of the symmetry group, we show that symmetry cannot give any protection in 1D in the Lindbladian sense: there is only one SPT phase in 1D independently of the symmetry group. We finish analysing the case of 2D topological quantum systems. There we expect that different topological phases in the Hamiltonian sense remain different in the Lindbladian sense. We show this formally only for the $\mathbb{Z}_n$ quantum double models $D(\mathbb{Z}_n)$. Concretely, we prove that, if $m$ is a divisor of $n$, there cannot exist any fast local Lindbladian connecting a ground state of $D(\mathbb{Z}_m)$ with one of $D(\mathbb{Z}_n)$, making rigorous the initial intuition that it takes long time to create those correlations present in the $\mathbb{Z}_n$ case that do not exist in the $\mathbb{Z}_m$ case and that, hence, the $\mathbb{Z}_n$ phase is strictly more complex in the Lindbladian case than the $\mathbb{Z}_m$ phase. We conjecture that such Lindbladian does exist in the opposite direction since Lindbladians can destroy correlations.
url https://quantum-journal.org/papers/q-2019-08-12-174/pdf/
work_keys_str_mv AT andreacoser classificationofphasesformixedstatesviafastdissipativeevolution
AT davidperezgarcia classificationofphasesformixedstatesviafastdissipativeevolution
_version_ 1724858153736077312