Bridging the condensation–collision size gap: a direct numerical simulation of continuous droplet growth in turbulent clouds
In most previous direct numerical simulation (DNS) studies on droplet growth in turbulence, condensational growth and collisional growth were treated separately. Studies in recent decades have postulated that small-scale turbulence may accelerate droplet collisions when droplets are still small...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2018-05-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/18/7251/2018/acp-18-7251-2018.pdf |
id |
doaj-b19509c58c22418eae9e8ed619cdc002 |
---|---|
record_format |
Article |
spelling |
doaj-b19509c58c22418eae9e8ed619cdc0022020-11-24T22:42:36ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242018-05-01187251726210.5194/acp-18-7251-2018Bridging the condensation–collision size gap: a direct numerical simulation of continuous droplet growth in turbulent cloudsS. Chen0M.-K. Yau1P. Bartello2L. Xue3McGill University, Montréal, Québec, CanadaMcGill University, Montréal, Québec, CanadaMcGill University, Montréal, Québec, CanadaNational Center for Atmospheric Research, Boulder, Colorado, USAIn most previous direct numerical simulation (DNS) studies on droplet growth in turbulence, condensational growth and collisional growth were treated separately. Studies in recent decades have postulated that small-scale turbulence may accelerate droplet collisions when droplets are still small when condensational growth is effective. This implies that both processes should be considered simultaneously to unveil the full history of droplet growth and rain formation. This paper introduces the first direct numerical simulation approach to explicitly study the continuous droplet growth by condensation and collisions inside an adiabatic ascending cloud parcel. Results from the condensation-only, collision-only, and condensation–collision experiments are compared to examine the contribution to the broadening of droplet size distribution (DSD) by the individual process and by the combined processes. Simulations of different turbulent intensities are conducted to investigate the impact of turbulence on each process and on the condensation-induced collisions. The results show that the condensational process promotes the collisions in a turbulent environment and reduces the collisions when in still air, indicating a positive impact of condensation on turbulent collisions. This work suggests the necessity of including both processes simultaneously when studying droplet–turbulence interaction to quantify the turbulence effect on the evolution of cloud droplet spectrum and rain formation.https://www.atmos-chem-phys.net/18/7251/2018/acp-18-7251-2018.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
S. Chen M.-K. Yau P. Bartello L. Xue |
spellingShingle |
S. Chen M.-K. Yau P. Bartello L. Xue Bridging the condensation–collision size gap: a direct numerical simulation of continuous droplet growth in turbulent clouds Atmospheric Chemistry and Physics |
author_facet |
S. Chen M.-K. Yau P. Bartello L. Xue |
author_sort |
S. Chen |
title |
Bridging the condensation–collision size gap: a direct numerical simulation of continuous droplet growth in turbulent clouds |
title_short |
Bridging the condensation–collision size gap: a direct numerical simulation of continuous droplet growth in turbulent clouds |
title_full |
Bridging the condensation–collision size gap: a direct numerical simulation of continuous droplet growth in turbulent clouds |
title_fullStr |
Bridging the condensation–collision size gap: a direct numerical simulation of continuous droplet growth in turbulent clouds |
title_full_unstemmed |
Bridging the condensation–collision size gap: a direct numerical simulation of continuous droplet growth in turbulent clouds |
title_sort |
bridging the condensation–collision size gap: a direct numerical simulation of continuous droplet growth in turbulent clouds |
publisher |
Copernicus Publications |
series |
Atmospheric Chemistry and Physics |
issn |
1680-7316 1680-7324 |
publishDate |
2018-05-01 |
description |
In most previous direct numerical simulation (DNS) studies on droplet growth in
turbulence, condensational growth and collisional growth were treated
separately. Studies in recent decades have postulated that small-scale
turbulence may accelerate droplet collisions when droplets are still small
when condensational growth is effective. This implies that both processes
should be considered simultaneously to unveil the full history of droplet
growth and rain formation. This paper introduces the first direct
numerical simulation approach to explicitly study the continuous droplet growth by condensation and collisions
inside an adiabatic ascending cloud parcel. Results from the
condensation-only, collision-only, and condensation–collision experiments are
compared to examine the contribution to the broadening of droplet size
distribution (DSD) by the individual process and by the combined processes.
Simulations of different turbulent intensities are conducted to investigate
the impact of turbulence on each process and on the condensation-induced
collisions. The results show that the condensational process promotes the
collisions in a turbulent environment and reduces the collisions when in
still air, indicating a positive impact of condensation on turbulent
collisions. This work suggests the necessity of including both processes
simultaneously when studying droplet–turbulence interaction to quantify the
turbulence effect on the evolution of cloud droplet spectrum and rain
formation. |
url |
https://www.atmos-chem-phys.net/18/7251/2018/acp-18-7251-2018.pdf |
work_keys_str_mv |
AT schen bridgingthecondensationcollisionsizegapadirectnumericalsimulationofcontinuousdropletgrowthinturbulentclouds AT mkyau bridgingthecondensationcollisionsizegapadirectnumericalsimulationofcontinuousdropletgrowthinturbulentclouds AT pbartello bridgingthecondensationcollisionsizegapadirectnumericalsimulationofcontinuousdropletgrowthinturbulentclouds AT lxue bridgingthecondensationcollisionsizegapadirectnumericalsimulationofcontinuousdropletgrowthinturbulentclouds |
_version_ |
1725699284302561280 |