Summary: | Thermochemical-technology has high potential for utilizing surplus heat from industrial processes and renewables. This paper examines the economic potential and thermochemical-technology behavior at a network level. The city of Hasselt (Belgium), was chosen as a case study for technology application due to its typical mid-European urban structure. An integrated heating system was proposed which transports energy potential from available surplus-heat sources to the demand side over long distances by a thermochemical-district-heating network, which serves for building heating with heat-pump assistance. A dynamic simulation model of the thermochemical-technology was developed using the experiments and Hasselt data to determine the technology’s energy performance. To examine the technology’s feasibility in the context of a large district energy network, an economic and environmental evaluation of the thermochemical-technology was performed. To compare key economic parameters between our integrated technology and other heating systems a sensitivity analysis to identify favorable market-conditions for wider deployment of the proposed technology was performed. The simulations indicated a 72% reduction of heat-pump heating energy usage as a benefit of the thermochemical system. Network pumping-energy and thermochemical-fluid mass were found via simulation to be 80 kWh and 300 tons, respectively. In comparison to domestic-gas-boilers, the proposed technology shows 95% lower carbon emissions, however at 37% higher annualized cost.
|