Stress Corrosion Cracking in an Extruded Cu-Free Al-Zn-Mg Alloy

Stress corrosion cracking (SCC) in Cu-free Al-Zn-Mg (7xxx) aluminium alloys limits its use in many applications. In this work, we study in detail the microstructure of a peak and slightly overaged condition in an AA7003 alloy using transmission- and scanning electron microscopy in order to provide a...

Full description

Bibliographic Details
Main Authors: Adrian Lervik, John C. Walmsley, Lars Lodgaard, Calin D. Marioara, Roy Johnsen, Otto Lunder, Randi Holmestad
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/10/9/1194
Description
Summary:Stress corrosion cracking (SCC) in Cu-free Al-Zn-Mg (7xxx) aluminium alloys limits its use in many applications. In this work, we study in detail the microstructure of a peak and slightly overaged condition in an AA7003 alloy using transmission- and scanning electron microscopy in order to provide a comprehensive understanding of the microstructural features related to SCC. The SCC properties have been assessed using the double cantilever beam method and slow strain rate tensile tests. Grain boundary particles, precipitate free zones, and matrix precipitates have been studied. A difference in the SCC properties is established between the two ageing conditions. The dominating difference is the size and orientation of the hardening phases. Possible explanations correlating the microstructure and SCC properties are discussed.
ISSN:2075-4701