Short-Term Load Forecasting Model Based on the Fusion of PSRT and QCNN

Short-term load forecasting (STLF) model based on the fusion of Phase Space Reconstruction Theory (PSRT) and Quantum Chaotic Neural Networks (QCNN) was proposed. The quantum computation and chaotic mechanism were integrated into QCNN, which was composed of quantum neurons and chaotic neurons. QCNN h...

Full description

Bibliographic Details
Main Author: Zhisheng Zhang
Format: Article
Language:English
Published: Hindawi Limited 2017-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2017/3485182
Description
Summary:Short-term load forecasting (STLF) model based on the fusion of Phase Space Reconstruction Theory (PSRT) and Quantum Chaotic Neural Networks (QCNN) was proposed. The quantum computation and chaotic mechanism were integrated into QCNN, which was composed of quantum neurons and chaotic neurons. QCNN has four layers, and they are the input layer, the first hidden layer of quantum hidden nodes, the second hidden layer of chaotic hidden nodes, and the output layer. The theoretical basis of constructing QCNN is Phase Space Reconstruction Theory (PSRT). Through the actual example simulation, the simulation results show that proposed model has good forecasting precision and stability.
ISSN:1024-123X
1563-5147