Effects of desiccation stress on adult female longevity in Aedes aegypti and Ae. albopictus (Diptera: Culicidae): results of a systematic review and pooled survival analysis
Abstract Background Transmission dynamics of mosquito-borne viruses such as dengue, Zika and chikungunya are affected by the longevity of the adult female mosquito. Environmental conditions influence the survival of adult female Aedes mosquitoes, the primary vectors of these viruses. While the assoc...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2018-04-01
|
Series: | Parasites & Vectors |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13071-018-2808-6 |
id |
doaj-b1498ffea1ff4fb8a81e1891d7a8835e |
---|---|
record_format |
Article |
spelling |
doaj-b1498ffea1ff4fb8a81e1891d7a8835e2020-11-25T01:03:01ZengBMCParasites & Vectors1756-33052018-04-0111112110.1186/s13071-018-2808-6Effects of desiccation stress on adult female longevity in Aedes aegypti and Ae. albopictus (Diptera: Culicidae): results of a systematic review and pooled survival analysisChris A. Schmidt0Genevieve Comeau1Andrew J. Monaghan2Daniel J. Williamson3Kacey C. Ernst4Department of Epidemiology and Biostatistics, Mel & Enid Zuckerman College of Public Health, University of ArizonaDepartment of Entomology, College of Agriculture & Life Sciences, University of ArizonaNational Center for Atmospheric ResearchDepartment of Entomology, College of Agriculture & Life Sciences, University of ArizonaDepartment of Epidemiology and Biostatistics, Mel & Enid Zuckerman College of Public Health, University of ArizonaAbstract Background Transmission dynamics of mosquito-borne viruses such as dengue, Zika and chikungunya are affected by the longevity of the adult female mosquito. Environmental conditions influence the survival of adult female Aedes mosquitoes, the primary vectors of these viruses. While the association of temperature with Aedes mortality has been relatively well-explored, the role of humidity is less established. The current study’s goals were to compile knowledge of the influence of humidity on adult survival in the important vector species Aedes aegypti and Ae. albopictus, and to quantify this relationship while accounting for the modifying effect of temperature. Methods We performed a systematic literature review to identify studies reporting experimental results informing the relationships among temperature, humidity and adult survival in Ae. aegypti and Ae. albopictus. Using a novel simulation approach to harmonize disparate survival data, we conducted pooled survival analyses via stratified and mixed effects Cox regression to estimate temperature-dependent associations between humidity and mortality risk for these species across a broad range of temperatures and vapor pressure deficits. Results After screening 1517 articles, 17 studies (one in semi-field and 16 in laboratory settings) met inclusion criteria and collectively reported results for 192 survival experiments. We review and synthesize relevant findings from these studies. Our stratified model estimated a strong temperature-dependent association of humidity with mortality in both species, though associations were not significant for Ae. albopictus in the mixed effects model. Lowest mortality risks were estimated around 27.5 °C and 21.5 °C for Ae. aegypti and Ae. albopictus, respectively, and mortality increased non-linearly with decreasing humidity. Aedes aegypti had a survival advantage relative to Ae. albopictus in the stratified model under most conditions, but species differences were not significant in the mixed effects model. Conclusions Humidity is associated with mortality risk in adult female Ae. aegypti in controlled settings. Data are limited at low humidities, temperature extremes, and for Ae. albopictus, and further studies should be conducted to reduce model uncertainty in these contexts. Desiccation is likely an important factor in Aedes population dynamics and viral transmission in arid regions. Models of Aedes-borne virus transmission may be improved by more comprehensively representing humidity effects.http://link.springer.com/article/10.1186/s13071-018-2808-6Aedes aegyptiAedes albopictusLongevitySurvivalHumidityVapor pressure |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Chris A. Schmidt Genevieve Comeau Andrew J. Monaghan Daniel J. Williamson Kacey C. Ernst |
spellingShingle |
Chris A. Schmidt Genevieve Comeau Andrew J. Monaghan Daniel J. Williamson Kacey C. Ernst Effects of desiccation stress on adult female longevity in Aedes aegypti and Ae. albopictus (Diptera: Culicidae): results of a systematic review and pooled survival analysis Parasites & Vectors Aedes aegypti Aedes albopictus Longevity Survival Humidity Vapor pressure |
author_facet |
Chris A. Schmidt Genevieve Comeau Andrew J. Monaghan Daniel J. Williamson Kacey C. Ernst |
author_sort |
Chris A. Schmidt |
title |
Effects of desiccation stress on adult female longevity in Aedes aegypti and Ae. albopictus (Diptera: Culicidae): results of a systematic review and pooled survival analysis |
title_short |
Effects of desiccation stress on adult female longevity in Aedes aegypti and Ae. albopictus (Diptera: Culicidae): results of a systematic review and pooled survival analysis |
title_full |
Effects of desiccation stress on adult female longevity in Aedes aegypti and Ae. albopictus (Diptera: Culicidae): results of a systematic review and pooled survival analysis |
title_fullStr |
Effects of desiccation stress on adult female longevity in Aedes aegypti and Ae. albopictus (Diptera: Culicidae): results of a systematic review and pooled survival analysis |
title_full_unstemmed |
Effects of desiccation stress on adult female longevity in Aedes aegypti and Ae. albopictus (Diptera: Culicidae): results of a systematic review and pooled survival analysis |
title_sort |
effects of desiccation stress on adult female longevity in aedes aegypti and ae. albopictus (diptera: culicidae): results of a systematic review and pooled survival analysis |
publisher |
BMC |
series |
Parasites & Vectors |
issn |
1756-3305 |
publishDate |
2018-04-01 |
description |
Abstract Background Transmission dynamics of mosquito-borne viruses such as dengue, Zika and chikungunya are affected by the longevity of the adult female mosquito. Environmental conditions influence the survival of adult female Aedes mosquitoes, the primary vectors of these viruses. While the association of temperature with Aedes mortality has been relatively well-explored, the role of humidity is less established. The current study’s goals were to compile knowledge of the influence of humidity on adult survival in the important vector species Aedes aegypti and Ae. albopictus, and to quantify this relationship while accounting for the modifying effect of temperature. Methods We performed a systematic literature review to identify studies reporting experimental results informing the relationships among temperature, humidity and adult survival in Ae. aegypti and Ae. albopictus. Using a novel simulation approach to harmonize disparate survival data, we conducted pooled survival analyses via stratified and mixed effects Cox regression to estimate temperature-dependent associations between humidity and mortality risk for these species across a broad range of temperatures and vapor pressure deficits. Results After screening 1517 articles, 17 studies (one in semi-field and 16 in laboratory settings) met inclusion criteria and collectively reported results for 192 survival experiments. We review and synthesize relevant findings from these studies. Our stratified model estimated a strong temperature-dependent association of humidity with mortality in both species, though associations were not significant for Ae. albopictus in the mixed effects model. Lowest mortality risks were estimated around 27.5 °C and 21.5 °C for Ae. aegypti and Ae. albopictus, respectively, and mortality increased non-linearly with decreasing humidity. Aedes aegypti had a survival advantage relative to Ae. albopictus in the stratified model under most conditions, but species differences were not significant in the mixed effects model. Conclusions Humidity is associated with mortality risk in adult female Ae. aegypti in controlled settings. Data are limited at low humidities, temperature extremes, and for Ae. albopictus, and further studies should be conducted to reduce model uncertainty in these contexts. Desiccation is likely an important factor in Aedes population dynamics and viral transmission in arid regions. Models of Aedes-borne virus transmission may be improved by more comprehensively representing humidity effects. |
topic |
Aedes aegypti Aedes albopictus Longevity Survival Humidity Vapor pressure |
url |
http://link.springer.com/article/10.1186/s13071-018-2808-6 |
work_keys_str_mv |
AT chrisaschmidt effectsofdesiccationstressonadultfemalelongevityinaedesaegyptiandaealbopictusdipteraculicidaeresultsofasystematicreviewandpooledsurvivalanalysis AT genevievecomeau effectsofdesiccationstressonadultfemalelongevityinaedesaegyptiandaealbopictusdipteraculicidaeresultsofasystematicreviewandpooledsurvivalanalysis AT andrewjmonaghan effectsofdesiccationstressonadultfemalelongevityinaedesaegyptiandaealbopictusdipteraculicidaeresultsofasystematicreviewandpooledsurvivalanalysis AT danieljwilliamson effectsofdesiccationstressonadultfemalelongevityinaedesaegyptiandaealbopictusdipteraculicidaeresultsofasystematicreviewandpooledsurvivalanalysis AT kaceycernst effectsofdesiccationstressonadultfemalelongevityinaedesaegyptiandaealbopictusdipteraculicidaeresultsofasystematicreviewandpooledsurvivalanalysis |
_version_ |
1725202584296226816 |