First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning
Analysis of histopathological image supposes the most reliable procedure to identify prostate cancer. Most studies try to develop computer aid-systems to face the Gleason grading problem. On the contrary, we delve into the discrimination between healthy and cancerous tissues in its earliest stage, o...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-04-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/21/4/356 |
id |
doaj-b1452f69da6b40d585f6dca538d8af25 |
---|---|
record_format |
Article |
spelling |
doaj-b1452f69da6b40d585f6dca538d8af252020-11-24T20:54:53ZengMDPI AGEntropy1099-43002019-04-0121435610.3390/e21040356e21040356First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic LearningGabriel García0Adrián Colomer1Valery Naranjo2Instituto de Investigación e Innovación en Bioingeniería (I3B), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46008 Valencia, SpainInstituto de Investigación e Innovación en Bioingeniería (I3B), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46008 Valencia, SpainInstituto de Investigación e Innovación en Bioingeniería (I3B), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46008 Valencia, SpainAnalysis of histopathological image supposes the most reliable procedure to identify prostate cancer. Most studies try to develop computer aid-systems to face the Gleason grading problem. On the contrary, we delve into the discrimination between healthy and cancerous tissues in its earliest stage, only focusing on the information contained in the automatically segmented gland candidates. We propose a hand-driven learning approach, in which we perform an exhaustive hand-crafted feature extraction stage combining in a novel way descriptors of morphology, texture, fractals and contextual information of the candidates under study. Then, we carry out an in-depth statistical analysis to select the most relevant features that constitute the inputs to the optimised machine-learning classifiers. Additionally, we apply for the first time on prostate segmented glands, deep-learning algorithms modifying the popular VGG19 neural network. We fine-tuned the last convolutional block of the architecture to provide the model specific knowledge about the gland images. The hand-driven learning approach, using a nonlinear Support Vector Machine, reports a slight outperforming over the rest of experiments with a final multi-class accuracy of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.876</mn> <mo>±</mo> <mn>0.026</mn> </mrow> </semantics> </math> </inline-formula> in the discrimination between false glands (artefacts), benign glands and Gleason grade 3 glands.https://www.mdpi.com/1099-4300/21/4/356gland classificationhand-crafted feature extractionfeature selectionhand-driven learningdeep learningprostate cancerhistological image |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gabriel García Adrián Colomer Valery Naranjo |
spellingShingle |
Gabriel García Adrián Colomer Valery Naranjo First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning Entropy gland classification hand-crafted feature extraction feature selection hand-driven learning deep learning prostate cancer histological image |
author_facet |
Gabriel García Adrián Colomer Valery Naranjo |
author_sort |
Gabriel García |
title |
First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning |
title_short |
First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning |
title_full |
First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning |
title_fullStr |
First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning |
title_full_unstemmed |
First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning |
title_sort |
first-stage prostate cancer identification on histopathological images: hand-driven versus automatic learning |
publisher |
MDPI AG |
series |
Entropy |
issn |
1099-4300 |
publishDate |
2019-04-01 |
description |
Analysis of histopathological image supposes the most reliable procedure to identify prostate cancer. Most studies try to develop computer aid-systems to face the Gleason grading problem. On the contrary, we delve into the discrimination between healthy and cancerous tissues in its earliest stage, only focusing on the information contained in the automatically segmented gland candidates. We propose a hand-driven learning approach, in which we perform an exhaustive hand-crafted feature extraction stage combining in a novel way descriptors of morphology, texture, fractals and contextual information of the candidates under study. Then, we carry out an in-depth statistical analysis to select the most relevant features that constitute the inputs to the optimised machine-learning classifiers. Additionally, we apply for the first time on prostate segmented glands, deep-learning algorithms modifying the popular VGG19 neural network. We fine-tuned the last convolutional block of the architecture to provide the model specific knowledge about the gland images. The hand-driven learning approach, using a nonlinear Support Vector Machine, reports a slight outperforming over the rest of experiments with a final multi-class accuracy of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.876</mn> <mo>±</mo> <mn>0.026</mn> </mrow> </semantics> </math> </inline-formula> in the discrimination between false glands (artefacts), benign glands and Gleason grade 3 glands. |
topic |
gland classification hand-crafted feature extraction feature selection hand-driven learning deep learning prostate cancer histological image |
url |
https://www.mdpi.com/1099-4300/21/4/356 |
work_keys_str_mv |
AT gabrielgarcia firststageprostatecanceridentificationonhistopathologicalimageshanddrivenversusautomaticlearning AT adriancolomer firststageprostatecanceridentificationonhistopathologicalimageshanddrivenversusautomaticlearning AT valerynaranjo firststageprostatecanceridentificationonhistopathologicalimageshanddrivenversusautomaticlearning |
_version_ |
1716793414964477952 |