Ezrin enhances line tension along transcellular tunnel edges via NMIIa driven actomyosin cable formation
Holes in endothelial barriers, called transendothelial cell macroapertures (TEMs), are predicted to be limited by line tension of unknown origin. Here the authors identify an actomyosin cable encircling TEMs and establish a role for ezrin in stabilising F-actin bundles, allowing their crosslinking b...
Main Authors: | , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2017-06-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/ncomms15839 |
Summary: | Holes in endothelial barriers, called transendothelial cell macroapertures (TEMs), are predicted to be limited by line tension of unknown origin. Here the authors identify an actomyosin cable encircling TEMs and establish a role for ezrin in stabilising F-actin bundles, allowing their crosslinking by non-muscle myosin IIa. |
---|---|
ISSN: | 2041-1723 |