Generalized model of interacting integrable tops
Abstract We introduce a family of classical integrable systems describing dynamics of M interacting gl N integrable tops. It extends the previously known model of interacting elliptic tops. Our construction is based on the GL N R-matrix satisfying the associative Yang-Baxter equation. The obtained s...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-10-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/JHEP10(2019)081 |
Summary: | Abstract We introduce a family of classical integrable systems describing dynamics of M interacting gl N integrable tops. It extends the previously known model of interacting elliptic tops. Our construction is based on the GL N R-matrix satisfying the associative Yang-Baxter equation. The obtained systems can be considered as extensions of the spin type Calogero-Moser models with (the classical analogues of) anisotropic spin exchange operators given in terms of the R-matrix data. In N = 1 case the spin Calogero-Moser model is reproduced. Explicit expressions for gl NM -valued Lax pair with spectral parameter and its classical dynamical r-matrix are obtained. Possible applications are briefly discussed. |
---|---|
ISSN: | 1029-8479 |