The Effect of Menisci on Kinetic Analysis of Evaporation for Molten Alkali Metal Salts (CsNO3, CsCl, LiCl, and NaCl) in Small Cylindrical Containers

Using isothermal thermogravimetric data of alkali metal salts (CsNO3, CsCl, LiCl, and NaCl), we conducted kinetic analysis on atmospheric evaporation to investigate the effect of meniscus on determining the condensation coefficient. In the process of evaporation into an atmospheric gas, molten salt...

Full description

Bibliographic Details
Main Authors: In-Hwan Yang, Hee-Chul Yang, Hyung-Ju Kim
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Journal of Chemistry
Online Access:http://dx.doi.org/10.1155/2018/1764132
Description
Summary:Using isothermal thermogravimetric data of alkali metal salts (CsNO3, CsCl, LiCl, and NaCl), we conducted kinetic analysis on atmospheric evaporation to investigate the effect of meniscus on determining the condensation coefficient. In the process of evaporation into an atmospheric gas, molten salt decomposed at the interface between molten salt and an atmospheric gas reacts with chemical compositions of the atmospheric gas to be an equilibrium state. In this atmospheric evaporation, the interface shape of molten salts is affected by the container diameter and the contact angle at the container wall. In the analysis results, the formed concave/convex meniscus led to underestimating the condensation coefficient of molten salts. However, whether the values of the condensation coefficient of molten salts were affected by menisci, the range of the predicted values was still low from 10−3 to 10−5. This result means that the presence of the foreign gas (air and Ar) is a dominant parameter in determining the condensation coefficient of atmospheric evaporation.
ISSN:2090-9063
2090-9071