Deuterium retention in RAFM steels after high fluence plasma exposure

Deuterium retention and detrapping behavior in the ferritic-martensitic steels EUROFER’97 and P92 after exposure to plasma at high fluences ≥ 1026D/m2 was studied using thermal desorption spectroscopy (TDS), supported by nuclear reaction analysis. Low-temperature irradiation at 450K and fluences ≥ 1...

Full description

Bibliographic Details
Main Authors: Y. Martynova, S. Möller, M. Rasiński, D. Matveev, M. Freisinger, K. Kiss, A. Kreter, B. Unterberg, S. Brezinsek, Ch. Linsmeier
Format: Article
Language:English
Published: Elsevier 2017-08-01
Series:Nuclear Materials and Energy
Online Access:http://www.sciencedirect.com/science/article/pii/S2352179116302812
id doaj-b10c27db006149a1b7bedecf2f806484
record_format Article
spelling doaj-b10c27db006149a1b7bedecf2f8064842020-11-25T01:14:44ZengElsevierNuclear Materials and Energy2352-17912017-08-0112648654Deuterium retention in RAFM steels after high fluence plasma exposureY. Martynova0S. Möller1M. Rasiński2D. Matveev3M. Freisinger4K. Kiss5A. Kreter6B. Unterberg7S. Brezinsek8Ch. Linsmeier9Corresponding author.; Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Jülich 52425, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Jülich 52425, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Jülich 52425, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Jülich 52425, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Jülich 52425, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Jülich 52425, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Jülich 52425, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Jülich 52425, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Jülich 52425, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Jülich 52425, GermanyDeuterium retention and detrapping behavior in the ferritic-martensitic steels EUROFER’97 and P92 after exposure to plasma at high fluences ≥ 1026D/m2 was studied using thermal desorption spectroscopy (TDS), supported by nuclear reaction analysis. Low-temperature irradiation at 450K and fluences ≥ 1026D/m2 with low impact energy D+ / D++He+ ions of 40eV at PSI-2 resulted in a deuterium inventory of 7–18 ×1019D/m2 predominantly at depths ≥8.6µm. Helium admixture led to a reduction of total D retention in both steels, irrespective of surface erosion and composition. The deuterium spectra of both steels displayed one D2 desorption peak at ∼ 540–570K and HD maxima at 540–590, 700–730 and 900–930K. It is suggested that deuterium is mostly retained in the bulk of steel material on interfaces of carbide precipitates and on grain boundaries. Keywords: EUROFER, RAFM, Deuterium, Retention, High fluence, Desorptionhttp://www.sciencedirect.com/science/article/pii/S2352179116302812
collection DOAJ
language English
format Article
sources DOAJ
author Y. Martynova
S. Möller
M. Rasiński
D. Matveev
M. Freisinger
K. Kiss
A. Kreter
B. Unterberg
S. Brezinsek
Ch. Linsmeier
spellingShingle Y. Martynova
S. Möller
M. Rasiński
D. Matveev
M. Freisinger
K. Kiss
A. Kreter
B. Unterberg
S. Brezinsek
Ch. Linsmeier
Deuterium retention in RAFM steels after high fluence plasma exposure
Nuclear Materials and Energy
author_facet Y. Martynova
S. Möller
M. Rasiński
D. Matveev
M. Freisinger
K. Kiss
A. Kreter
B. Unterberg
S. Brezinsek
Ch. Linsmeier
author_sort Y. Martynova
title Deuterium retention in RAFM steels after high fluence plasma exposure
title_short Deuterium retention in RAFM steels after high fluence plasma exposure
title_full Deuterium retention in RAFM steels after high fluence plasma exposure
title_fullStr Deuterium retention in RAFM steels after high fluence plasma exposure
title_full_unstemmed Deuterium retention in RAFM steels after high fluence plasma exposure
title_sort deuterium retention in rafm steels after high fluence plasma exposure
publisher Elsevier
series Nuclear Materials and Energy
issn 2352-1791
publishDate 2017-08-01
description Deuterium retention and detrapping behavior in the ferritic-martensitic steels EUROFER’97 and P92 after exposure to plasma at high fluences ≥ 1026D/m2 was studied using thermal desorption spectroscopy (TDS), supported by nuclear reaction analysis. Low-temperature irradiation at 450K and fluences ≥ 1026D/m2 with low impact energy D+ / D++He+ ions of 40eV at PSI-2 resulted in a deuterium inventory of 7–18 ×1019D/m2 predominantly at depths ≥8.6µm. Helium admixture led to a reduction of total D retention in both steels, irrespective of surface erosion and composition. The deuterium spectra of both steels displayed one D2 desorption peak at ∼ 540–570K and HD maxima at 540–590, 700–730 and 900–930K. It is suggested that deuterium is mostly retained in the bulk of steel material on interfaces of carbide precipitates and on grain boundaries. Keywords: EUROFER, RAFM, Deuterium, Retention, High fluence, Desorption
url http://www.sciencedirect.com/science/article/pii/S2352179116302812
work_keys_str_mv AT ymartynova deuteriumretentioninrafmsteelsafterhighfluenceplasmaexposure
AT smoller deuteriumretentioninrafmsteelsafterhighfluenceplasmaexposure
AT mrasinski deuteriumretentioninrafmsteelsafterhighfluenceplasmaexposure
AT dmatveev deuteriumretentioninrafmsteelsafterhighfluenceplasmaexposure
AT mfreisinger deuteriumretentioninrafmsteelsafterhighfluenceplasmaexposure
AT kkiss deuteriumretentioninrafmsteelsafterhighfluenceplasmaexposure
AT akreter deuteriumretentioninrafmsteelsafterhighfluenceplasmaexposure
AT bunterberg deuteriumretentioninrafmsteelsafterhighfluenceplasmaexposure
AT sbrezinsek deuteriumretentioninrafmsteelsafterhighfluenceplasmaexposure
AT chlinsmeier deuteriumretentioninrafmsteelsafterhighfluenceplasmaexposure
_version_ 1725156956104032256