Curcumin Incorporation into Zn<sub>3</sub>Al Layered Double Hydroxides—Preparation, Characterization and Curcumin Release

Curcumin (CR) is a natural antioxidant compound extracted from <i>Curcuma longa</i> (turmeric). Until now, researches related to the incorporation of CR into layered double hydroxides (LDHs) were focused only on hybrid structures based on a MgxAl-LDH matrix. Our studies were extended tow...

Full description

Bibliographic Details
Main Authors: Octavian D. Pavel, Ariana Şerban, Rodica Zăvoianu, Elena Bacalum, Ruxandra Bîrjega
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/10/4/244
Description
Summary:Curcumin (CR) is a natural antioxidant compound extracted from <i>Curcuma longa</i> (turmeric). Until now, researches related to the incorporation of CR into layered double hydroxides (LDHs) were focused only on hybrid structures based on a MgxAl-LDH matrix. Our studies were extended towards the incorporation of CR in another type of LDH-matrix (Zn3Al-LDH) which could have an even more prolific effect on the antioxidant activity due to the presence of Zn. Four CR-modified Zn3Al-LDH solids were synthesized, e.g., PZn3Al-CR(Aq), PZn3Al-CR(Et), RZn3Al-CR(Aq) and RZn3Al-CR(Et) (molar ratio CR/Al =1/10, where P and R stand for the preparation method (P=precipitation, R=reconstruction), while (Aq) and (Et) indicate the type of CR solution, aqueous or ethanolic, respectively). The samples were characterized by XRD, Attenuated Total Reflectance Fourier Transformed IR (ATR-FTIR) and diffuse reflectance (DR)-UV&#8722;Vis techniques and the CR-release was investigated in buffer solutions at different pH values (1, 2, 5, 7 and 8). XRD results indicated a layered structure for PZn3Al-CR(Aq), PZn3Al-CR(Et), RZn3Al-CR(Aq) impurified with ZnO, while RZn3Al-CR(Et) contained ZnO nano-particles as the main crystalline phase. For all samples, CR-release revealed a decreasing tendency towards the pH increase, and higher values were obtained for RZn3Al-CR(Et) and PZn3Al-CR(Et) (e.g., 45% and 25%, respectively at pH 1).
ISSN:2073-4352