A Stable Finite-Difference Scheme for Population Growth and Diffusion on a Map.
We describe a general Godunov-type splitting for numerical simulations of the Fisher-Kolmogorov-Petrovski-Piskunov growth and diffusion equation on a world map with Neumann boundary conditions. The procedure is semi-implicit, hence quite stable. Our principal application for this solver is modeling...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2017-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC5235379?pdf=render |