The formation of structure regularities in the recrystallized near-surface layer after restoration by heat treatment process of nickel-based high-temperature strength alloys

In modern nickel nickel-based high-temperature strength alloys of the ZhS32 type with a directional and single-crystal structure on surfaces that were previously subjected to mechanical treatment, with the subsequent isothermal exposure in the vicinity of the homogenization temperature lasting mor...

Full description

Bibliographic Details
Main Authors: К.А. Yushchenko, O.V. Yarovytsyn, T.M. Kushnaryova, V.E. Mazurak, V.V. Kurenkova
Format: Article
Language:English
Published: National Academy of Sciences of Ukraine. Physico- Technological Institute of Metals and Alloys 2021-03-01
Series: Металознавство та обробка металів
Subjects:
Online Access:https://momjournal.com.ua/sites/default/files/7%20MOM1_21-53-65.pdf
id doaj-b0e54f3b38014d8d9928e5ee6d49ae8b
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author К.А. Yushchenko
O.V. Yarovytsyn
T.M. Kushnaryova
V.E. Mazurak
V.V. Kurenkova
spellingShingle К.А. Yushchenko
O.V. Yarovytsyn
T.M. Kushnaryova
V.E. Mazurak
V.V. Kurenkova
The formation of structure regularities in the recrystallized near-surface layer after restoration by heat treatment process of nickel-based high-temperature strength alloys
Металознавство та обробка металів
nickel nickel-based high-temperature strength alloys
vacuum heat treatment
restoration of alloys structure
subsurface recrystallized layer
raster electron microscopy
author_facet К.А. Yushchenko
O.V. Yarovytsyn
T.M. Kushnaryova
V.E. Mazurak
V.V. Kurenkova
author_sort К.А. Yushchenko
title The formation of structure regularities in the recrystallized near-surface layer after restoration by heat treatment process of nickel-based high-temperature strength alloys
title_short The formation of structure regularities in the recrystallized near-surface layer after restoration by heat treatment process of nickel-based high-temperature strength alloys
title_full The formation of structure regularities in the recrystallized near-surface layer after restoration by heat treatment process of nickel-based high-temperature strength alloys
title_fullStr The formation of structure regularities in the recrystallized near-surface layer after restoration by heat treatment process of nickel-based high-temperature strength alloys
title_full_unstemmed The formation of structure regularities in the recrystallized near-surface layer after restoration by heat treatment process of nickel-based high-temperature strength alloys
title_sort formation of structure regularities in the recrystallized near-surface layer after restoration by heat treatment process of nickel-based high-temperature strength alloys
publisher National Academy of Sciences of Ukraine. Physico- Technological Institute of Metals and Alloys
series Металознавство та обробка металів
issn 2073-9583
2664-2441
publishDate 2021-03-01
description In modern nickel nickel-based high-temperature strength alloys of the ZhS32 type with a directional and single-crystal structure on surfaces that were previously subjected to mechanical treatment, with the subsequent isothermal exposure in the vicinity of the homogenization temperature lasting more than 15 minutes a subsurface recrystallized layer up to 40-65 μm deep is formed such us a chain of grains. The formation of this layer is a side effect that restrained the industrial application of vacuum heat treatment to restore local operational degradation ("raft"-structure) on the overheated inlet edges of non-bandage shelved gas-cooled high-pressure turbine blades of some modern aircraft turbine engines. Given the technical complexity of reliable removal of this recrystallized layer from the tract surface of thin-walled gas-cooled blades, it is important to develop technological measures to translate grain boundaries in unremoved residues of recrystallized near-surface layer into a safer structural state. The regularities of recrystallized layer formation in the process of 3-stage reductive vacuum treatment has been investigated by the methods of raster electron microscopy and X-ray structural (EDX) microanalysis at magnification up to × 2000 on fragments of TVT blades with ZhS26-VI alloy (directional structure) and ZhS32-VI alloy (monocrystalline structure). It has been established that the recrystallized layer formed in the process of aging 1.25-1.5 hours at the temperature of alloy homogenization, is a chain of grain with a tightly packed γ׳-phase with layers at their boundaries, which consist of the non-reinforcing γ׳-phase up to 1-3 μm wide with the carbide phases presence. It has been shown that the rational choice of the temperature of high-temperature aging is an effective technological control of the grain boundaries structural state in a near-surface recrystallized layer of the considered high-temperature strength alloys. Assigning a temperature of 1050°C for isothermal exposure after homogenization heat treatment for ZhS26 and ZhS32 alloys allows to reduce the grain boundaries width in the recrystallized layer to 1-2 μm, keep them intermittent and avoid systematic release of carbide particles at the grain boundaries. On the basis of established in the Paton welding institute of regularities of formation and control of the structure of the near-surface recrystallized layer developed technological recommendations for optimizing the vacuum heat treatment modes to restore the structure of non-bandage shelved gas-cooled high-pressure turbine blades with type ZhS32 high-temperature strength alloys. This technology has passed experimental and practical testing during the next maintenance cycle of flight operation on one of the modern turbojet double-circuit gas turbine engines with afterburner combustion chamber.
topic nickel nickel-based high-temperature strength alloys
vacuum heat treatment
restoration of alloys structure
subsurface recrystallized layer
raster electron microscopy
url https://momjournal.com.ua/sites/default/files/7%20MOM1_21-53-65.pdf
work_keys_str_mv AT kayushchenko theformationofstructureregularitiesintherecrystallizednearsurfacelayerafterrestorationbyheattreatmentprocessofnickelbasedhightemperaturestrengthalloys
AT ovyarovytsyn theformationofstructureregularitiesintherecrystallizednearsurfacelayerafterrestorationbyheattreatmentprocessofnickelbasedhightemperaturestrengthalloys
AT tmkushnaryova theformationofstructureregularitiesintherecrystallizednearsurfacelayerafterrestorationbyheattreatmentprocessofnickelbasedhightemperaturestrengthalloys
AT vemazurak theformationofstructureregularitiesintherecrystallizednearsurfacelayerafterrestorationbyheattreatmentprocessofnickelbasedhightemperaturestrengthalloys
AT vvkurenkova theformationofstructureregularitiesintherecrystallizednearsurfacelayerafterrestorationbyheattreatmentprocessofnickelbasedhightemperaturestrengthalloys
AT kayushchenko formationofstructureregularitiesintherecrystallizednearsurfacelayerafterrestorationbyheattreatmentprocessofnickelbasedhightemperaturestrengthalloys
AT ovyarovytsyn formationofstructureregularitiesintherecrystallizednearsurfacelayerafterrestorationbyheattreatmentprocessofnickelbasedhightemperaturestrengthalloys
AT tmkushnaryova formationofstructureregularitiesintherecrystallizednearsurfacelayerafterrestorationbyheattreatmentprocessofnickelbasedhightemperaturestrengthalloys
AT vemazurak formationofstructureregularitiesintherecrystallizednearsurfacelayerafterrestorationbyheattreatmentprocessofnickelbasedhightemperaturestrengthalloys
AT vvkurenkova formationofstructureregularitiesintherecrystallizednearsurfacelayerafterrestorationbyheattreatmentprocessofnickelbasedhightemperaturestrengthalloys
_version_ 1721391278770356224
spelling doaj-b0e54f3b38014d8d9928e5ee6d49ae8b2021-06-07T12:49:20ZengNational Academy of Sciences of Ukraine. Physico- Technological Institute of Metals and Alloys Металознавство та обробка металів2073-95832664-24412021-03-01271536510.15407/mom2021.01.053The formation of structure regularities in the recrystallized near-surface layer after restoration by heat treatment process of nickel-based high-temperature strength alloysК.А. Yushchenko0https://orcid.org/0000-0002-6276-7843O.V. Yarovytsyn1https://orcid.org/0000-0001-9922-3877T.M. Kushnaryova2https://orcid.org/0000-0003-1920-3118V.E. Mazurak3https://orcid.org/0000-0002-1247-6917V.V. Kurenkova4https://orcid.org/0000-0002-2084-4820E.O. Paton Electric Welding Institute of the NAS of Ukraine, Kyiv, UkraineE.O. Paton Electric Welding Institute of the NAS of Ukraine, Kyiv, UkraineE.O. Paton Electric Welding Institute of the NAS of Ukraine, Kyiv, UkraineE.O. Paton Electric Welding Institute of the NAS of Ukraine, Kyiv, UkraineCompany «Paton Turbine Technologies», Kyiv, UkraineIn modern nickel nickel-based high-temperature strength alloys of the ZhS32 type with a directional and single-crystal structure on surfaces that were previously subjected to mechanical treatment, with the subsequent isothermal exposure in the vicinity of the homogenization temperature lasting more than 15 minutes a subsurface recrystallized layer up to 40-65 μm deep is formed such us a chain of grains. The formation of this layer is a side effect that restrained the industrial application of vacuum heat treatment to restore local operational degradation ("raft"-structure) on the overheated inlet edges of non-bandage shelved gas-cooled high-pressure turbine blades of some modern aircraft turbine engines. Given the technical complexity of reliable removal of this recrystallized layer from the tract surface of thin-walled gas-cooled blades, it is important to develop technological measures to translate grain boundaries in unremoved residues of recrystallized near-surface layer into a safer structural state. The regularities of recrystallized layer formation in the process of 3-stage reductive vacuum treatment has been investigated by the methods of raster electron microscopy and X-ray structural (EDX) microanalysis at magnification up to × 2000 on fragments of TVT blades with ZhS26-VI alloy (directional structure) and ZhS32-VI alloy (monocrystalline structure). It has been established that the recrystallized layer formed in the process of aging 1.25-1.5 hours at the temperature of alloy homogenization, is a chain of grain with a tightly packed γ׳-phase with layers at their boundaries, which consist of the non-reinforcing γ׳-phase up to 1-3 μm wide with the carbide phases presence. It has been shown that the rational choice of the temperature of high-temperature aging is an effective technological control of the grain boundaries structural state in a near-surface recrystallized layer of the considered high-temperature strength alloys. Assigning a temperature of 1050°C for isothermal exposure after homogenization heat treatment for ZhS26 and ZhS32 alloys allows to reduce the grain boundaries width in the recrystallized layer to 1-2 μm, keep them intermittent and avoid systematic release of carbide particles at the grain boundaries. On the basis of established in the Paton welding institute of regularities of formation and control of the structure of the near-surface recrystallized layer developed technological recommendations for optimizing the vacuum heat treatment modes to restore the structure of non-bandage shelved gas-cooled high-pressure turbine blades with type ZhS32 high-temperature strength alloys. This technology has passed experimental and practical testing during the next maintenance cycle of flight operation on one of the modern turbojet double-circuit gas turbine engines with afterburner combustion chamber.https://momjournal.com.ua/sites/default/files/7%20MOM1_21-53-65.pdfnickel nickel-based high-temperature strength alloysvacuum heat treatmentrestoration of alloys structuresubsurface recrystallized layerraster electron microscopy