A near horizon extreme binary black hole geometry

Abstract A new solution of four-dimensional vacuum General Relativity is presented. It describes the near horizon region of the extreme (maximally spinning) binary black hole system with two identical extreme Kerr black holes held in equilibrium by a massless strut. This is the first example of a no...

Full description

Bibliographic Details
Main Authors: Jacob Ciafre, Maria J. Rodriguez
Format: Article
Language:English
Published: SpringerOpen 2019-09-01
Series:European Physical Journal C: Particles and Fields
Online Access:http://link.springer.com/article/10.1140/epjc/s10052-019-7188-3
Description
Summary:Abstract A new solution of four-dimensional vacuum General Relativity is presented. It describes the near horizon region of the extreme (maximally spinning) binary black hole system with two identical extreme Kerr black holes held in equilibrium by a massless strut. This is the first example of a non-supersymmetric, near horizon extreme binary black hole geometry of two uncharged black holes. The black holes are co-rotating, their relative distance is fixed, and the solution is uniquely specified by the mass. Asymptotically, the geometry corresponds to the near horizon extreme Kerr (NHEK) black hole. The binary extreme system has finite entropy.
ISSN:1434-6044
1434-6052