Coupled Delft3D-Object Model to Predict Mobility of Munition on Sandy Seafloor

The coupled Delft3D-object model has been developed to predict the mobility and burial of objects on sandy seafloors. The Delft3D model is used to predict seabed environmental factors such as currents, waves (peak wave period, significant wave height, wave direction), water level, sediment transport...

Full description

Bibliographic Details
Main Authors: Peter C. Chu, Vinicius S. Pessanha, Chenwu Fan, Joseph Calantoni
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/6/9/330
Description
Summary:The coupled Delft3D-object model has been developed to predict the mobility and burial of objects on sandy seafloors. The Delft3D model is used to predict seabed environmental factors such as currents, waves (peak wave period, significant wave height, wave direction), water level, sediment transport, and seabed change, which are taken as the forcing term to the object model consisting of three components: (a) physical parameters such as diameter, length, mass, and rolling moment; (b) dynamics of the rolling cylinder around its major axis; (c) an empirical sediment scour model with re-exposure parameterization. The model is compared with the observational data collected from a field experiment from 21 April to 13 May 2013 off the coast of Panama City, Florida. The experimental data contain both object mobility using sector scanning sonars and maintenance divers as well as simultaneous environmental time series data of the boundary layer hydrodynamics and sediment transport conditions. Comparison between modeled and observed data clearly shows the model’s capabilities and limitations.
ISSN:2311-5521