Theoretical Study of Gamma-ray Pulsars

We use the non-stationary three dimensional two-layer outer gap model to explain gamma-ray emissions from a pulsar magnetosphere. We found out that for some pulsars like the Geminga pulsar, it was hard to explain emissions above a level of around 1 GeV. We then developed the model into a non-stati...

Full description

Bibliographic Details
Main Authors: Kwong Sang Cheng, Jumpei Takata
Format: Article
Language:English
Published: Korean Space Science Society (KSSS) 2016-06-01
Series:Journal of Astronomy and Space Sciences
Subjects:
Online Access:http://ocean.kisti.re.kr/downfile/volume/kosss/OJOOBS/2016/v33n2/OJOOBS_2016_v33n2_69.pdf
Description
Summary:We use the non-stationary three dimensional two-layer outer gap model to explain gamma-ray emissions from a pulsar magnetosphere. We found out that for some pulsars like the Geminga pulsar, it was hard to explain emissions above a level of around 1 GeV. We then developed the model into a non-stationary model. In this model we assigned a power-law distribution to one or more of the spectral parameters proposed in the previous model and calculated the weighted phaseaveraged spectrum. Though this model is suitable for some pulsars, it still cannot explain the high energy emission of the Geminga pulsar. An Inverse-Compton Scattering component between the primary particles and the radio photons in the outer magnetosphere was introduced into the model, and this component produced a sufficient number of GeV photons in the spectrum of the Geminga pulsar.
ISSN:2093-5587
2093-1409