T-minima on convex sets and Mosco-convergence

Half century ago, Umberto Mosco was the ``relatore di tesi (tesi about the Mosco- convergence) di laurea'' of the first author; a quart of century ago, the first author was the ``relatore di tesi di laurea'' of the second author. The roots of this paper are the Mosco-convergence...

Full description

Bibliographic Details
Main Authors: Lucio Boccardo, Chiara Leone
Format: Article
Language:English
Published: Sapienza Università Editrice 2020-06-01
Series:Rendiconti di Matematica e delle Sue Applicazioni
Subjects:
Online Access:https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2020(3-4)/223-236.pdf
id doaj-b081e18d029841089a075942fe8b325f
record_format Article
spelling doaj-b081e18d029841089a075942fe8b325f2020-12-22T15:16:05ZengSapienza Università EditriceRendiconti di Matematica e delle Sue Applicazioni1120-71832532-33502020-06-01413-4223236T-minima on convex sets and Mosco-convergenceLucio Boccardo 0Chiara Leone1Sapienza Università di Roma - Istituto Lombardo.Università degli Studi di Napoli Federico II - Dipartimento di Matematica “R. Caccioppoli”, Via Cinthia, 80126 Napoli, Italy.Half century ago, Umberto Mosco was the ``relatore di tesi (tesi about the Mosco- convergence) di laurea'' of the first author; a quart of century ago, the first author was the ``relatore di tesi di laurea'' of the second author. The roots of this paper are the Mosco-convergence of convex sets and the minimization of integral functionals of the Calculus of Variations. We consider integral functionals of the type J(v)=∫Ω j(x,Dv)-∫Ω f(x)v(x). We study the existence of T-minima (infinite energy minima) on convex sets of the Sobolev space W01,p(Ω) and the stability of the T-minima under the Mosco-convergence of the convex sets.https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2020(3-4)/223-236.pdfmosco-convergencet-minimainfinite energy minima.
collection DOAJ
language English
format Article
sources DOAJ
author Lucio Boccardo
Chiara Leone
spellingShingle Lucio Boccardo
Chiara Leone
T-minima on convex sets and Mosco-convergence
Rendiconti di Matematica e delle Sue Applicazioni
mosco-convergence
t-minima
infinite energy minima.
author_facet Lucio Boccardo
Chiara Leone
author_sort Lucio Boccardo
title T-minima on convex sets and Mosco-convergence
title_short T-minima on convex sets and Mosco-convergence
title_full T-minima on convex sets and Mosco-convergence
title_fullStr T-minima on convex sets and Mosco-convergence
title_full_unstemmed T-minima on convex sets and Mosco-convergence
title_sort t-minima on convex sets and mosco-convergence
publisher Sapienza Università Editrice
series Rendiconti di Matematica e delle Sue Applicazioni
issn 1120-7183
2532-3350
publishDate 2020-06-01
description Half century ago, Umberto Mosco was the ``relatore di tesi (tesi about the Mosco- convergence) di laurea'' of the first author; a quart of century ago, the first author was the ``relatore di tesi di laurea'' of the second author. The roots of this paper are the Mosco-convergence of convex sets and the minimization of integral functionals of the Calculus of Variations. We consider integral functionals of the type J(v)=∫Ω j(x,Dv)-∫Ω f(x)v(x). We study the existence of T-minima (infinite energy minima) on convex sets of the Sobolev space W01,p(Ω) and the stability of the T-minima under the Mosco-convergence of the convex sets.
topic mosco-convergence
t-minima
infinite energy minima.
url https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2020(3-4)/223-236.pdf
work_keys_str_mv AT lucioboccardo tminimaonconvexsetsandmoscoconvergence
AT chiaraleone tminimaonconvexsetsandmoscoconvergence
_version_ 1724374163983958016