T-minima on convex sets and Mosco-convergence
Half century ago, Umberto Mosco was the ``relatore di tesi (tesi about the Mosco- convergence) di laurea'' of the first author; a quart of century ago, the first author was the ``relatore di tesi di laurea'' of the second author. The roots of this paper are the Mosco-convergence...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sapienza Università Editrice
2020-06-01
|
Series: | Rendiconti di Matematica e delle Sue Applicazioni |
Subjects: | |
Online Access: | https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2020(3-4)/223-236.pdf |
id |
doaj-b081e18d029841089a075942fe8b325f |
---|---|
record_format |
Article |
spelling |
doaj-b081e18d029841089a075942fe8b325f2020-12-22T15:16:05ZengSapienza Università EditriceRendiconti di Matematica e delle Sue Applicazioni1120-71832532-33502020-06-01413-4223236T-minima on convex sets and Mosco-convergenceLucio Boccardo 0Chiara Leone1Sapienza Università di Roma - Istituto Lombardo.Università degli Studi di Napoli Federico II - Dipartimento di Matematica “R. Caccioppoli”, Via Cinthia, 80126 Napoli, Italy.Half century ago, Umberto Mosco was the ``relatore di tesi (tesi about the Mosco- convergence) di laurea'' of the first author; a quart of century ago, the first author was the ``relatore di tesi di laurea'' of the second author. The roots of this paper are the Mosco-convergence of convex sets and the minimization of integral functionals of the Calculus of Variations. We consider integral functionals of the type J(v)=∫Ω j(x,Dv)-∫Ω f(x)v(x). We study the existence of T-minima (infinite energy minima) on convex sets of the Sobolev space W01,p(Ω) and the stability of the T-minima under the Mosco-convergence of the convex sets.https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2020(3-4)/223-236.pdfmosco-convergencet-minimainfinite energy minima. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Lucio Boccardo Chiara Leone |
spellingShingle |
Lucio Boccardo Chiara Leone T-minima on convex sets and Mosco-convergence Rendiconti di Matematica e delle Sue Applicazioni mosco-convergence t-minima infinite energy minima. |
author_facet |
Lucio Boccardo Chiara Leone |
author_sort |
Lucio Boccardo |
title |
T-minima on convex sets and Mosco-convergence |
title_short |
T-minima on convex sets and Mosco-convergence |
title_full |
T-minima on convex sets and Mosco-convergence |
title_fullStr |
T-minima on convex sets and Mosco-convergence |
title_full_unstemmed |
T-minima on convex sets and Mosco-convergence |
title_sort |
t-minima on convex sets and mosco-convergence |
publisher |
Sapienza Università Editrice |
series |
Rendiconti di Matematica e delle Sue Applicazioni |
issn |
1120-7183 2532-3350 |
publishDate |
2020-06-01 |
description |
Half century ago, Umberto Mosco was the ``relatore di tesi (tesi about the Mosco- convergence) di laurea'' of the first author; a quart of century ago, the first author was the ``relatore di tesi di laurea'' of the second author. The roots of this paper are the Mosco-convergence of convex sets and the minimization of integral functionals of the Calculus of Variations. We consider integral functionals of the type J(v)=∫Ω j(x,Dv)-∫Ω f(x)v(x). We study the existence of T-minima (infinite energy minima) on convex sets of the Sobolev space W01,p(Ω) and the stability of the T-minima under the Mosco-convergence of the convex sets. |
topic |
mosco-convergence t-minima infinite energy minima. |
url |
https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2020(3-4)/223-236.pdf |
work_keys_str_mv |
AT lucioboccardo tminimaonconvexsetsandmoscoconvergence AT chiaraleone tminimaonconvexsetsandmoscoconvergence |
_version_ |
1724374163983958016 |