A Novel Weight Lifting Task for Investigating Effort and Persistence in Rats

Here we present a novel effort-based task for laboratory rats: the weight lifting task (WLT). Studies of effort expenditure in rodents have typically involved climbing barriers within T-mazes or operant lever pressing paradigms. These task designs have been successful for neuropharmacological and ne...

Full description

Bibliographic Details
Main Authors: Blake Porter, Kristin L. Hillman
Format: Article
Language:English
Published: Frontiers Media S.A. 2019-12-01
Series:Frontiers in Behavioral Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fnbeh.2019.00275/full
Description
Summary:Here we present a novel effort-based task for laboratory rats: the weight lifting task (WLT). Studies of effort expenditure in rodents have typically involved climbing barriers within T-mazes or operant lever pressing paradigms. These task designs have been successful for neuropharmacological and neurophysiological investigations, but both tasks involve simple action patterns. High climbing barriers may also present risk of injury to animals and/or issues with tethered recording equipment. In the WLT, a rat is placed in a large rectangular arena and tasked with pulling a rope 30 cm to trigger food delivery at a nearby spout; weights can be added to the rope in 45 g increments to increase the intensity of effort. As compared to lever pressing and barrier jumping, 30 cm of rope pulling is a multi-step action sequence requiring sustained effort. The actions are carried out on the single plane of the arena floor, making it safer for the animal and more suitable for tethered equipment and video tracking. A microcontroller and associated sensors enable precise timestamping of specific behaviors to synchronize with electrophysiological recordings. The rope and reward spout are spatially segregated to allow for spatial discrimination of the effort zone and the reward zone. We validated the task across five cohorts of rats (total n = 35) and report consistent behavioral metrics. The WLT is well-suited for neuropharmacological and/or in vivo neurophysiological investigations surrounding effortful behaviors, particularly when wanting to probe different aspects of effort expenditure (intensity vs. duration).
ISSN:1662-5153