Electrochemical Sensing for Examining Vitamin D3 based on MIP using NOVA 1.7 and Autolab PGSTAT 302N

Introduction: An electrochemical sensor has the ability to transform the associated data containing electrochemical reactions into a reliable representative signal. The electrochemical sensors can be classified into potentiometric, conductometric, and ampere-metric or Volta-metric. Although, the...

Full description

Bibliographic Details
Main Authors: Saveri Singh, Naresh Batra, MA Ansari, Shabana Urooj
Format: Article
Language:English
Published: JCDR Research and Publications Private Limited 2020-07-01
Series:Journal of Clinical and Diagnostic Research
Subjects:
Online Access:https://jcdr.net/articles/PDF/13847/44347_CE[Ra1]_F(SHU)_PF1(AG_KM)_PFA(KM)_PB(AG_KM)_PN(SL).pdf
Description
Summary:Introduction: An electrochemical sensor has the ability to transform the associated data containing electrochemical reactions into a reliable representative signal. The electrochemical sensors can be classified into potentiometric, conductometric, and ampere-metric or Volta-metric. Although, there are various electrochemical techniques for the detection of Vitamin D3, there is still a need for a simplified and cost-effective method. An electrochemical sensor provides great sensitivity towards the detection of the analyte. Aim: To fabricate an electrochemical sensor for the detection of Vitamin D3. The sensor used Molecular Imprinted Polymer (MIP) based Screen Printed Carbon Electrode (SPCE). Materials and Methods: The SPCE used was a three-electrode system consisting of silver working electrode, silver reference electrode and a counter carbon electrode. The reagents used in the experiment was p-Phenylenediamine, resorcinol and Vitamin D3 that were applied in a particular amount onto the SPCE. The process of electropolymerisation was carried out in order to form a non-conductive layer. Cavities were gradually formed on the surface of SPCE. A mediator was used to obtain reliable results for the detection of Vitamin D3. It is evident from the existing literature that the number of scans of electropolymerisation holds a significant role in this process. The procedure was applied for the formation of non-imprinted electrode in the absence of the analyte. Results: The presence of the template i.e., Vitamin D3 was recorded using the developed electrochemical sensor. The current decreased on rebinding of Vitamin D3 which resulted in the change of redox peak of ferricyanide. This signified the sudden increase in concentration of Vitamin D3 specifying its presence. Conclusion: The results obtained specifies the great sensitivity of the electrochemical sensor towards the template i.e., vitamin D3. The clinical relevance of such electrochemical sensors is that they produce simple, accurate and reproducible results which can be used to optimise the care of patients.
ISSN:2249-782X
0973-709X