Comparison of Reactive Flow Simulations for a LOX/CH4 Multi-element Rocket Engine

This study details the reactive flow simulations of a LOX/CH4 Multi-element rocket engine. The work has been conducted within the framework of the HYPROB-BREAD project whose main objective is the design, manufacture and testing of a LOX/LCH4 regeneratively cooled ground demonstrator. Numerical simul...

Full description

Bibliographic Details
Main Authors: French Ainslie D., Cutrone Luigi, Schettino Antonio, Marini Marco, Battista Francesco, Natale Pasquale
Format: Article
Language:English
Published: EDP Sciences 2019-01-01
Series:MATEC Web of Conferences
Online Access:https://www.matec-conferences.org/articles/matecconf/pdf/2019/53/matecconf_easn2019_07007.pdf
Description
Summary:This study details the reactive flow simulations of a LOX/CH4 Multi-element rocket engine. The work has been conducted within the framework of the HYPROB-BREAD project whose main objective is the design, manufacture and testing of a LOX/LCH4 regeneratively cooled ground demonstrator. Numerical simulations have been carried out with both commercial software and CIRA software developed in house. Two sets of boundary conditions, nominal and experimental, have been applied from which a code-to-code validation has been effected with the former and a code-to-experiment validation with the latter. The results presented include both flow data and heat fluxes as well as parameters associated with engine performance, and indicate an excellent agreement with experimental data of a LOX/CH4 Multi-element rocket engine.
ISSN:2261-236X