Summary: | Remote and extreme regions such as in the Arctic remain a challenging ground for geological mapping and mineral exploration. Coastal cliffs are often the only major well-exposed outcrops, but are mostly not observable by air/spaceborne nadir remote sensing sensors. Current outcrop mapping efforts rely on the interpretation of Terrestrial Laser Scanning and oblique photogrammetry, which have inadequate spectral resolution to allow for detection of subtle lithological differences. This study aims to integrate 3D-photogrammetry with vessel-based hyperspectral imaging to complement geological outcrop models with quantitative information regarding mineral variations and thus enables the differentiation of barren rocks from potential economic ore deposits. We propose an innovative workflow based on: (1) the correction of hyperspectral images by eliminating the distortion effects originating from the periodic movements of the vessel; (2) lithological mapping based on spectral information; and (3) accurate 3D integration of spectral products with photogrammetric terrain data. The method is tested using experimental data acquired from near-vertical cliff sections in two parts of Greenland, in Karrat (Central West) and Søndre Strømfjord (South West). Root-Mean-Square Error of (6.7, 8.4) pixels for Karrat and (3.9, 4.5) pixels for Søndre Strømfjord in X and Y directions demonstrate the geometric accuracy of final 3D products and allow a precise mapping of the targets identified using the hyperspectral data contents. This study highlights the potential of using other operational mobile platforms (e.g., unmanned systems) for regional mineral mapping based on horizontal viewing geometry and multi-source and multi-scale data fusion approaches.
|