Emergency obstacle avoidance trajectory tracking control based on active disturbance rejection for autonomous vehicles

To solve the problem of understeer and oversteer for autonomous vehicle under high-speed emergency obstacle avoidance conditions, considering the effect of steering angular frequency and vehicle speed on yaw rate for four-wheel steering vehicles in the frequency domain, a feed-forward controller for...

Full description

Bibliographic Details
Main Authors: Runqiao Liu, Minxiang Wei, Nan Sang
Format: Article
Language:English
Published: SAGE Publishing 2020-05-01
Series:International Journal of Advanced Robotic Systems
Online Access:https://doi.org/10.1177/1729881420921105
Description
Summary:To solve the problem of understeer and oversteer for autonomous vehicle under high-speed emergency obstacle avoidance conditions, considering the effect of steering angular frequency and vehicle speed on yaw rate for four-wheel steering vehicles in the frequency domain, a feed-forward controller for four-wheel steering autonomous vehicles that tracks the desired yaw rate is proposed. Furthermore, the steering sensitivity coefficient of the vehicle is compensated linearly with the change in the steering angular frequency and vehicle speed. In addition, to minimize the tracking errors caused by vehicle nonlinearity and external disturbances, an active disturbance rejection control feedback controller that tracks the desired lateral displacement and desired yaw angle is designed. Finally, CarSim® obstacle avoidance simulation results show that an autonomous vehicle with the four-wheel steering path tracking controller consisting of feed-forward control and feedback control could not only improve the tire lateral forces but also reduce tail flicking (oversteer) and pushing ahead (understeer) under high-speed emergency obstacle avoidance conditions.
ISSN:1729-8814