Exponentiality for the construct of affine sets

The topological construct SSET of affine sets over the two-point set S contains many interesting topological subconstructs such as TOP, the construct of topological spaces, and CL, the construct of closure spaces. For this category and its subconstructs cartesian closedness is studied. We first give...

Full description

Bibliographic Details
Main Author: Veerle Claes
Format: Article
Language:English
Published: Universitat Politècnica de València 2008-04-01
Series:Applied General Topology
Subjects:
Online Access:http://polipapers.upv.es/index.php/AGT/article/view/1865
id doaj-b032159298964e3f8632e763f915cea5
record_format Article
spelling doaj-b032159298964e3f8632e763f915cea52020-11-24T21:26:07ZengUniversitat Politècnica de ValènciaApplied General Topology1576-94021989-41472008-04-0191213210.4995/agt.2008.18651510Exponentiality for the construct of affine setsVeerle Claes0Vrije Universiteit BrusselThe topological construct SSET of affine sets over the two-point set S contains many interesting topological subconstructs such as TOP, the construct of topological spaces, and CL, the construct of closure spaces. For this category and its subconstructs cartesian closedness is studied. We first give a classification of the subconstructs of SSET according to their behaviour with respect to exponenttiality. We formulate sufficient conditions implying that a subconstruct behaves similar to CL. On the other hand, we characterize a conglomerate of subconstructs with behaviour similar to TOP. Finally, we construct the cartesian closed topological hull of SSET.http://polipapers.upv.es/index.php/AGT/article/view/1865Topological constructAffine spaceCartesian closed categoryCartesian closed topological hullExponential object
collection DOAJ
language English
format Article
sources DOAJ
author Veerle Claes
spellingShingle Veerle Claes
Exponentiality for the construct of affine sets
Applied General Topology
Topological construct
Affine space
Cartesian closed category
Cartesian closed topological hull
Exponential object
author_facet Veerle Claes
author_sort Veerle Claes
title Exponentiality for the construct of affine sets
title_short Exponentiality for the construct of affine sets
title_full Exponentiality for the construct of affine sets
title_fullStr Exponentiality for the construct of affine sets
title_full_unstemmed Exponentiality for the construct of affine sets
title_sort exponentiality for the construct of affine sets
publisher Universitat Politècnica de València
series Applied General Topology
issn 1576-9402
1989-4147
publishDate 2008-04-01
description The topological construct SSET of affine sets over the two-point set S contains many interesting topological subconstructs such as TOP, the construct of topological spaces, and CL, the construct of closure spaces. For this category and its subconstructs cartesian closedness is studied. We first give a classification of the subconstructs of SSET according to their behaviour with respect to exponenttiality. We formulate sufficient conditions implying that a subconstruct behaves similar to CL. On the other hand, we characterize a conglomerate of subconstructs with behaviour similar to TOP. Finally, we construct the cartesian closed topological hull of SSET.
topic Topological construct
Affine space
Cartesian closed category
Cartesian closed topological hull
Exponential object
url http://polipapers.upv.es/index.php/AGT/article/view/1865
work_keys_str_mv AT veerleclaes exponentialityfortheconstructofaffinesets
_version_ 1725980882885410816