Mathematical morphology and poset geometry
The aim of this paper is to characterize morphological convex geometries (resp., antimatroids). We define these two structures by using closure operators, and kernel operators. We show that these convex geometries are equivalent to poset geometries.
Main Authors: | Alain Bretto, Enzo Maria Li Marzi |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2001-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/S0161171201006718 |
Similar Items
-
Equivalent Forms for a Poset to Be Modular Poset
by: Sundarayya P., et al.
Published: (2021-05-01) -
On representable posets
by: Tan, Tey Ting Kok.
Published: (2012) -
On representable posets
by: Tan, Tey Ting Kok.
Published: (2012) -
A Framework for Coxeter Spectral Classification of Finite Posets and Their Mesh Geometries of Roots
by: Daniel Simson, et al.
Published: (2013-01-01) -
Fuzzy -Continuous Posets
by: S. P. Rao, et al.
Published: (2013-01-01)