A connectivity-based eco-regionalization method of the Mediterranean Sea.
Ecoregionalization of the ocean is a necessary step for spatial management of marine resources. Previous ecoregionalization efforts were based either on the distribution of species or on the distribution of physical and biogeochemical properties. These approaches ignore the dispersal of species by o...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2014-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4222956?pdf=render |
id |
doaj-b00c3bf7d3a34228ac50fe1ce8334219 |
---|---|
record_format |
Article |
spelling |
doaj-b00c3bf7d3a34228ac50fe1ce83342192020-11-25T01:33:18ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-01911e11197810.1371/journal.pone.0111978A connectivity-based eco-regionalization method of the Mediterranean Sea.Léo BerlineAnna-Maria RammouAndrea DoglioliAnne MolcardAnne PetrenkoEcoregionalization of the ocean is a necessary step for spatial management of marine resources. Previous ecoregionalization efforts were based either on the distribution of species or on the distribution of physical and biogeochemical properties. These approaches ignore the dispersal of species by oceanic circulation that can connect regions and isolates others. This dispersal effect can be quantified through connectivity that is the probability, or time of transport between distinct regions. Here a new regionalization method based on a connectivity approach is described and applied to the Mediterranean Sea. This method is based on an ensemble of Lagrangian particle numerical simulations using ocean model outputs at 1/12° resolution. The domain is divided into square subregions of 50 km size. Then particle trajectories are used to quantify the oceanographic distance between each subregions, here defined as the mean connection time. Finally the oceanographic distance matrix is used as a basis for a hierarchical clustering. 22 regions are retained and discussed together with a quantification of the stability of boundaries between regions. Identified regions are generally consistent with the general circulation with boundaries located along current jets or surrounding gyres patterns. Regions are discussed in the light of existing ecoregionalizations and available knowledge on plankton distributions. This objective method complements static regionalization approaches based on the environmental niche concept and can be applied to any oceanic region at any scale.http://europepmc.org/articles/PMC4222956?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Léo Berline Anna-Maria Rammou Andrea Doglioli Anne Molcard Anne Petrenko |
spellingShingle |
Léo Berline Anna-Maria Rammou Andrea Doglioli Anne Molcard Anne Petrenko A connectivity-based eco-regionalization method of the Mediterranean Sea. PLoS ONE |
author_facet |
Léo Berline Anna-Maria Rammou Andrea Doglioli Anne Molcard Anne Petrenko |
author_sort |
Léo Berline |
title |
A connectivity-based eco-regionalization method of the Mediterranean Sea. |
title_short |
A connectivity-based eco-regionalization method of the Mediterranean Sea. |
title_full |
A connectivity-based eco-regionalization method of the Mediterranean Sea. |
title_fullStr |
A connectivity-based eco-regionalization method of the Mediterranean Sea. |
title_full_unstemmed |
A connectivity-based eco-regionalization method of the Mediterranean Sea. |
title_sort |
connectivity-based eco-regionalization method of the mediterranean sea. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2014-01-01 |
description |
Ecoregionalization of the ocean is a necessary step for spatial management of marine resources. Previous ecoregionalization efforts were based either on the distribution of species or on the distribution of physical and biogeochemical properties. These approaches ignore the dispersal of species by oceanic circulation that can connect regions and isolates others. This dispersal effect can be quantified through connectivity that is the probability, or time of transport between distinct regions. Here a new regionalization method based on a connectivity approach is described and applied to the Mediterranean Sea. This method is based on an ensemble of Lagrangian particle numerical simulations using ocean model outputs at 1/12° resolution. The domain is divided into square subregions of 50 km size. Then particle trajectories are used to quantify the oceanographic distance between each subregions, here defined as the mean connection time. Finally the oceanographic distance matrix is used as a basis for a hierarchical clustering. 22 regions are retained and discussed together with a quantification of the stability of boundaries between regions. Identified regions are generally consistent with the general circulation with boundaries located along current jets or surrounding gyres patterns. Regions are discussed in the light of existing ecoregionalizations and available knowledge on plankton distributions. This objective method complements static regionalization approaches based on the environmental niche concept and can be applied to any oceanic region at any scale. |
url |
http://europepmc.org/articles/PMC4222956?pdf=render |
work_keys_str_mv |
AT leoberline aconnectivitybasedecoregionalizationmethodofthemediterraneansea AT annamariarammou aconnectivitybasedecoregionalizationmethodofthemediterraneansea AT andreadoglioli aconnectivitybasedecoregionalizationmethodofthemediterraneansea AT annemolcard aconnectivitybasedecoregionalizationmethodofthemediterraneansea AT annepetrenko aconnectivitybasedecoregionalizationmethodofthemediterraneansea AT leoberline connectivitybasedecoregionalizationmethodofthemediterraneansea AT annamariarammou connectivitybasedecoregionalizationmethodofthemediterraneansea AT andreadoglioli connectivitybasedecoregionalizationmethodofthemediterraneansea AT annemolcard connectivitybasedecoregionalizationmethodofthemediterraneansea AT annepetrenko connectivitybasedecoregionalizationmethodofthemediterraneansea |
_version_ |
1725078081468628992 |