O que é isto?

Neste texto, discutimos aspectos da constituição da Geometria Euclidiana como um campo da ciência, tendo como objetivo compreender se as geometrias que se constituem a partir desse campo do conhecimento podem ser consideradas novas. Na busca por tais compreensões, elegemos dois “tipos” de Geometria...

Full description

Bibliographic Details
Main Authors: Carolina Cordeiro Batista, Carolina Yumi Lemos Ferreira Graciolli
Format: Article
Language:English
Published: Universidade Estadual do Ceará 2021-07-01
Series:Boletim Cearense de Educação e História da Matemática
Subjects:
Online Access:https://revistas.uece.br/index.php/BOCEHM/article/view/4616
Description
Summary:Neste texto, discutimos aspectos da constituição da Geometria Euclidiana como um campo da ciência, tendo como objetivo compreender se as geometrias que se constituem a partir desse campo do conhecimento podem ser consideradas novas. Na busca por tais compreensões, elegemos dois “tipos” de Geometria: a Geometria Dinâmica e a Geometria do Origami e adentramos em um movimento de reflexão de cunho histórico e filosófico, por meio do qual lançamos questionamentos que nos levam a uma compreensão. Olhamos para a Geometria Dinâmica na perspectiva filosófica da fenomenologia, para a qual a dinamicidade pode ser compreendida a partir da ideia de movimento do sujeito e da concepção de intencionalidade. Relativamente à Geometria do Origami, nossa compreensão se deu a partir dos seis axiomas de Huzita e da potencialidade deles para a resolução de situações que não podem ser solucionadas somente por meio da Geometria Euclidiana. À medida que avança, a discussão nos leva à origem da Geometria, isto é, ao modo pelo qual ela se constituiu como um campo científico, bem como à maneira pela qual a Geometria Euclidiana, organizada por meio de um sistema axiomático, favoreceu uma abertura para que outras formas de pensar esse campo da ciência se tornassem possíveis. A partir de nossa análise e discussão, foi possível destacar o modo dessas geometrias de se mostrarem como uma possibilidade para avançar em relação aos conhecimentos da Geometria Euclidiana, quais sejam, a Geometria Dinâmica, tornando explícita a relação de movimento com objetos geométricos, e a Geometria do Origami, constituindo-se por meio de um sistema axiomático.
ISSN:2357-8661
2447-8504