O que é isto?
Neste texto, discutimos aspectos da constituição da Geometria Euclidiana como um campo da ciência, tendo como objetivo compreender se as geometrias que se constituem a partir desse campo do conhecimento podem ser consideradas novas. Na busca por tais compreensões, elegemos dois “tipos” de Geometria...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universidade Estadual do Ceará
2021-07-01
|
Series: | Boletim Cearense de Educação e História da Matemática |
Subjects: | |
Online Access: | https://revistas.uece.br/index.php/BOCEHM/article/view/4616 |
Summary: | Neste texto, discutimos aspectos da constituição da Geometria Euclidiana como um campo da ciência, tendo como objetivo compreender se as geometrias que se constituem a partir desse campo do conhecimento podem ser consideradas novas. Na busca por tais compreensões, elegemos dois “tipos” de Geometria: a Geometria Dinâmica e a Geometria do Origami e adentramos em um movimento de reflexão de cunho histórico e filosófico, por meio do qual lançamos questionamentos que nos levam a uma compreensão. Olhamos para a Geometria Dinâmica na perspectiva filosófica da fenomenologia, para a qual a dinamicidade pode ser compreendida a partir da ideia de movimento do sujeito e da concepção de intencionalidade. Relativamente à Geometria do Origami, nossa compreensão se deu a partir dos seis axiomas de Huzita e da potencialidade deles para a resolução de situações que não podem ser solucionadas somente por meio da Geometria Euclidiana. À medida que avança, a discussão nos leva à origem da Geometria, isto é, ao modo pelo qual ela se constituiu como um campo científico, bem como à maneira pela qual a Geometria Euclidiana, organizada por meio de um sistema axiomático, favoreceu uma abertura para que outras formas de pensar esse campo da ciência se tornassem possíveis. A partir de nossa análise e discussão, foi possível destacar o modo dessas geometrias de se mostrarem como uma possibilidade para avançar em relação aos conhecimentos da Geometria Euclidiana, quais sejam, a Geometria Dinâmica, tornando explícita a relação de movimento com objetos geométricos, e a Geometria do Origami, constituindo-se por meio de um sistema axiomático.
|
---|---|
ISSN: | 2357-8661 2447-8504 |