Real-time seroprevalence and exposure levels of emerging pathogens in infection-naive host populations
Abstract For endemic pathogens, seroprevalence mimics overall exposure and is minimally influenced by the time that recent infections take to seroconvert. Simulating spatially-explicit and stochastic outbreaks, we set out to explore how, for emerging pathogens, the mix of exponential growth in infec...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-03-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-021-84672-1 |
id |
doaj-b006dc9ed2014761b46578b734885a62 |
---|---|
record_format |
Article |
spelling |
doaj-b006dc9ed2014761b46578b734885a622021-03-14T12:16:29ZengNature Publishing GroupScientific Reports2045-23222021-03-011111810.1038/s41598-021-84672-1Real-time seroprevalence and exposure levels of emerging pathogens in infection-naive host populationsFrancesco Pinotti0Uri Obolski1Paul Wikramaratna2Marta Giovanetti3Robert Paton4Paul Klenerman5Craig Thompson6Sunetra Gupta7José Lourenço8Department of Zoology, University of OxfordSchool of Public Health, Tel Aviv UniversityDepartment of Zoology, University of OxfordLaboratório de Genética Celular e Molecular, Universidade Federal de Minas GeraisDepartment of Zoology, University of OxfordNuffield Department of Medicine, Peter Medawar Building for Pathogen ResearchDepartment of Zoology, University of OxfordDepartment of Zoology, University of OxfordDepartment of Zoology, University of OxfordAbstract For endemic pathogens, seroprevalence mimics overall exposure and is minimally influenced by the time that recent infections take to seroconvert. Simulating spatially-explicit and stochastic outbreaks, we set out to explore how, for emerging pathogens, the mix of exponential growth in infection events and a constant rate for seroconversion events could lead to real-time significant differences in the total numbers of exposed versus seropositive. We find that real-time seroprevalence of an emerging pathogen can underestimate exposure depending on measurement time, epidemic doubling time, duration and natural variation in the time to seroconversion among hosts. We formalise mathematically how underestimation increases non-linearly as the host’s time to seroconversion is ever longer than the pathogen’s doubling time, and how more variable time to seroconversion among hosts results in lower underestimation. In practice, assuming that real-time seroprevalence reflects the true exposure to emerging pathogens risks overestimating measures of public health importance (e.g. infection fatality ratio) as well as the epidemic size of future waves. These results contribute to a better understanding and interpretation of real-time serological data collected during the emergence of pathogens in infection-naive host populations.https://doi.org/10.1038/s41598-021-84672-1 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Francesco Pinotti Uri Obolski Paul Wikramaratna Marta Giovanetti Robert Paton Paul Klenerman Craig Thompson Sunetra Gupta José Lourenço |
spellingShingle |
Francesco Pinotti Uri Obolski Paul Wikramaratna Marta Giovanetti Robert Paton Paul Klenerman Craig Thompson Sunetra Gupta José Lourenço Real-time seroprevalence and exposure levels of emerging pathogens in infection-naive host populations Scientific Reports |
author_facet |
Francesco Pinotti Uri Obolski Paul Wikramaratna Marta Giovanetti Robert Paton Paul Klenerman Craig Thompson Sunetra Gupta José Lourenço |
author_sort |
Francesco Pinotti |
title |
Real-time seroprevalence and exposure levels of emerging pathogens in infection-naive host populations |
title_short |
Real-time seroprevalence and exposure levels of emerging pathogens in infection-naive host populations |
title_full |
Real-time seroprevalence and exposure levels of emerging pathogens in infection-naive host populations |
title_fullStr |
Real-time seroprevalence and exposure levels of emerging pathogens in infection-naive host populations |
title_full_unstemmed |
Real-time seroprevalence and exposure levels of emerging pathogens in infection-naive host populations |
title_sort |
real-time seroprevalence and exposure levels of emerging pathogens in infection-naive host populations |
publisher |
Nature Publishing Group |
series |
Scientific Reports |
issn |
2045-2322 |
publishDate |
2021-03-01 |
description |
Abstract For endemic pathogens, seroprevalence mimics overall exposure and is minimally influenced by the time that recent infections take to seroconvert. Simulating spatially-explicit and stochastic outbreaks, we set out to explore how, for emerging pathogens, the mix of exponential growth in infection events and a constant rate for seroconversion events could lead to real-time significant differences in the total numbers of exposed versus seropositive. We find that real-time seroprevalence of an emerging pathogen can underestimate exposure depending on measurement time, epidemic doubling time, duration and natural variation in the time to seroconversion among hosts. We formalise mathematically how underestimation increases non-linearly as the host’s time to seroconversion is ever longer than the pathogen’s doubling time, and how more variable time to seroconversion among hosts results in lower underestimation. In practice, assuming that real-time seroprevalence reflects the true exposure to emerging pathogens risks overestimating measures of public health importance (e.g. infection fatality ratio) as well as the epidemic size of future waves. These results contribute to a better understanding and interpretation of real-time serological data collected during the emergence of pathogens in infection-naive host populations. |
url |
https://doi.org/10.1038/s41598-021-84672-1 |
work_keys_str_mv |
AT francescopinotti realtimeseroprevalenceandexposurelevelsofemergingpathogensininfectionnaivehostpopulations AT uriobolski realtimeseroprevalenceandexposurelevelsofemergingpathogensininfectionnaivehostpopulations AT paulwikramaratna realtimeseroprevalenceandexposurelevelsofemergingpathogensininfectionnaivehostpopulations AT martagiovanetti realtimeseroprevalenceandexposurelevelsofemergingpathogensininfectionnaivehostpopulations AT robertpaton realtimeseroprevalenceandexposurelevelsofemergingpathogensininfectionnaivehostpopulations AT paulklenerman realtimeseroprevalenceandexposurelevelsofemergingpathogensininfectionnaivehostpopulations AT craigthompson realtimeseroprevalenceandexposurelevelsofemergingpathogensininfectionnaivehostpopulations AT sunetragupta realtimeseroprevalenceandexposurelevelsofemergingpathogensininfectionnaivehostpopulations AT joselourenco realtimeseroprevalenceandexposurelevelsofemergingpathogensininfectionnaivehostpopulations |
_version_ |
1724221463749197824 |