Two-loop matching of renormalizable operators: general considerations and applications

Abstract Low-energy effective field theories (EFT) encode information about the physics at high energies — i.e., the high-energy theory (HET). To extract this information the EFT and the HET have to be matched to each other. At the one-loop level, general results for the matching of renormalizable o...

Full description

Bibliographic Details
Main Authors: Henning Bahl, Ivan Sobolev
Format: Article
Language:English
Published: SpringerOpen 2021-03-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP03(2021)286
id doaj-afea8c84bd7943a8baad8e3f510a7926
record_format Article
spelling doaj-afea8c84bd7943a8baad8e3f510a79262021-04-04T11:07:14ZengSpringerOpenJournal of High Energy Physics1029-84792021-03-012021314110.1007/JHEP03(2021)286Two-loop matching of renormalizable operators: general considerations and applicationsHenning Bahl0Ivan Sobolev1Deutsches Elektronen-Synchrotron DESYDeutsches Elektronen-Synchrotron DESYAbstract Low-energy effective field theories (EFT) encode information about the physics at high energies — i.e., the high-energy theory (HET). To extract this information the EFT and the HET have to be matched to each other. At the one-loop level, general results for the matching of renormalizable operators have already been obtained in the literature. In the present paper, we take a step towards a better understanding of renormalizable operator matching at the two-loop level: focusing on the diagrammatic method, we discuss in detail the various contributions to two-loop matching conditions and compare different approaches to derive them. Moreover, we discuss which observables are best suited for the derivation of matching conditions. As a concrete application, we calculate the O α t α s $$ \mathcal{O}\left({\alpha}_t{\alpha}_s\right) $$ and O α t 2 $$ \mathcal{O}\left({\alpha}_t^2\right) $$ matching conditions of the scalar four-point couplings between the Standard Model (SM) and the Two-Higgs-Doublet Model (THDM) as well as the THDM and the Minimal Supersymmetric Standard Model (MSSM). We use the derived formulas to improve the prediction of the SM-like Higgs mass in the MSSM using the THDM as EFT.https://doi.org/10.1007/JHEP03(2021)286Beyond Standard ModelEffective Field Theories
collection DOAJ
language English
format Article
sources DOAJ
author Henning Bahl
Ivan Sobolev
spellingShingle Henning Bahl
Ivan Sobolev
Two-loop matching of renormalizable operators: general considerations and applications
Journal of High Energy Physics
Beyond Standard Model
Effective Field Theories
author_facet Henning Bahl
Ivan Sobolev
author_sort Henning Bahl
title Two-loop matching of renormalizable operators: general considerations and applications
title_short Two-loop matching of renormalizable operators: general considerations and applications
title_full Two-loop matching of renormalizable operators: general considerations and applications
title_fullStr Two-loop matching of renormalizable operators: general considerations and applications
title_full_unstemmed Two-loop matching of renormalizable operators: general considerations and applications
title_sort two-loop matching of renormalizable operators: general considerations and applications
publisher SpringerOpen
series Journal of High Energy Physics
issn 1029-8479
publishDate 2021-03-01
description Abstract Low-energy effective field theories (EFT) encode information about the physics at high energies — i.e., the high-energy theory (HET). To extract this information the EFT and the HET have to be matched to each other. At the one-loop level, general results for the matching of renormalizable operators have already been obtained in the literature. In the present paper, we take a step towards a better understanding of renormalizable operator matching at the two-loop level: focusing on the diagrammatic method, we discuss in detail the various contributions to two-loop matching conditions and compare different approaches to derive them. Moreover, we discuss which observables are best suited for the derivation of matching conditions. As a concrete application, we calculate the O α t α s $$ \mathcal{O}\left({\alpha}_t{\alpha}_s\right) $$ and O α t 2 $$ \mathcal{O}\left({\alpha}_t^2\right) $$ matching conditions of the scalar four-point couplings between the Standard Model (SM) and the Two-Higgs-Doublet Model (THDM) as well as the THDM and the Minimal Supersymmetric Standard Model (MSSM). We use the derived formulas to improve the prediction of the SM-like Higgs mass in the MSSM using the THDM as EFT.
topic Beyond Standard Model
Effective Field Theories
url https://doi.org/10.1007/JHEP03(2021)286
work_keys_str_mv AT henningbahl twoloopmatchingofrenormalizableoperatorsgeneralconsiderationsandapplications
AT ivansobolev twoloopmatchingofrenormalizableoperatorsgeneralconsiderationsandapplications
_version_ 1721543120249683968