Efficient simulation of a low-profile visualized intraluminal support device: a novel fast virtual stenting technique

Abstract Background The low-profile visualized intraluminal support (LVIS) stent has become a promising endovascular option for treating intracranial aneurysms. To achieve better treatment of aneurysms using LVIS, we developed a fast virtual stenting technique for use with LVIS (F-LVIS) to evaluate...

Full description

Bibliographic Details
Main Authors: Qianqian Zhang, Jian Liu, Yisen Zhang, Ying Zhang, Zhongbin Tian, Wenqiang Li, Junfan Chen, Xiao Mo, Yunhan Cai, Nikhil Paliwal, Hui Meng, Yang Wang, Shengzhang Wang, Xinjian Yang
Format: Article
Language:English
Published: BMC 2018-03-01
Series:Chinese Neurosurgical Journal
Subjects:
Online Access:http://link.springer.com/article/10.1186/s41016-018-0112-0
Description
Summary:Abstract Background The low-profile visualized intraluminal support (LVIS) stent has become a promising endovascular option for treating intracranial aneurysms. To achieve better treatment of aneurysms using LVIS, we developed a fast virtual stenting technique for use with LVIS (F-LVIS) to evaluate hemodynamic changes in the aneurysm and validate its reliability. Methods A patient-specific aneurysm was selected for making comparisons between the real LVIS (R-LVIS) and the F-LVIS. To perform R-LVIS stenting, a hollow phantom based on a patient-specific aneurysm was fabricated using a three-dimensional printer. An R-LVIS was released in the phantom according to standard procedure. F-LVIS was then applied successfully in this aneurysm model. The computational fluid dynamics (CFD) values were calculated for both the F-LVIS and R-LVIS models. Qualitative and quantitative comparisons of the two models focused on hemodynamic parameters. Results The hemodynamic characteristics for R-LVIS and F-LVIS were well matched. Representative contours of velocities and wall shear stress (WSS) were consistently similar in both distribution and magnitude. The velocity vectors also showed high similarity, although the R-LVIS model showed faster and more fluid streams entering the aneurysm. Variation tendencies of the velocity in the aneurysm and the WSS on the aneurysm wall were also similar in the two models, with no statistically significant differences in either velocity or WSS. Conclusions The results of the computational hemodynamics indicate that F-LVIS is suitable for evaluating hemodynamic factors. This novel F-LVIS is considered efficient, practical, and effective.
ISSN:2057-4967