The Ulam Type Stability of a Generalized Additive Mapping and Concrete Examples
We give an Ulam type stability result for the following functional equation: f(αx−αx′+x0)=βf(x)−βf(x′)+y0 (for all x,x′∈X) under a suitable condition. We also give a concrete stability result for the case taking up δ∥x∥p∥x′∥q as a control function.
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/2013/109754 |
id |
doaj-afde1d0790484187b943e61486a9ceac |
---|---|
record_format |
Article |
spelling |
doaj-afde1d0790484187b943e61486a9ceac2020-11-24T22:58:10ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252013-01-01201310.1155/2013/109754109754The Ulam Type Stability of a Generalized Additive Mapping and Concrete ExamplesHiroyoshi Oda0Makoto Tsukada1Takeshi Miura2Yuji Kobayashi3Sin-Ei Takahasi4Department of Information Sciences, Toho University, Funabashi, Chiba 274-8501, JapanDepartment of Information Sciences, Toho University, Funabashi, Chiba 274-8501, JapanYamagata University, Yonezawa, Yamagata 273-0866, JapanToho University, Funabashi, Chiba 274-8501, JapanToho University, Yamagata University, Funabashi, Chiba 273-0866, JapanWe give an Ulam type stability result for the following functional equation: f(αx−αx′+x0)=βf(x)−βf(x′)+y0 (for all x,x′∈X) under a suitable condition. We also give a concrete stability result for the case taking up δ∥x∥p∥x′∥q as a control function.http://dx.doi.org/10.1155/2013/109754 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hiroyoshi Oda Makoto Tsukada Takeshi Miura Yuji Kobayashi Sin-Ei Takahasi |
spellingShingle |
Hiroyoshi Oda Makoto Tsukada Takeshi Miura Yuji Kobayashi Sin-Ei Takahasi The Ulam Type Stability of a Generalized Additive Mapping and Concrete Examples International Journal of Mathematics and Mathematical Sciences |
author_facet |
Hiroyoshi Oda Makoto Tsukada Takeshi Miura Yuji Kobayashi Sin-Ei Takahasi |
author_sort |
Hiroyoshi Oda |
title |
The Ulam Type Stability of a Generalized Additive Mapping and Concrete Examples |
title_short |
The Ulam Type Stability of a Generalized Additive Mapping and Concrete Examples |
title_full |
The Ulam Type Stability of a Generalized Additive Mapping and Concrete Examples |
title_fullStr |
The Ulam Type Stability of a Generalized Additive Mapping and Concrete Examples |
title_full_unstemmed |
The Ulam Type Stability of a Generalized Additive Mapping and Concrete Examples |
title_sort |
ulam type stability of a generalized additive mapping and concrete examples |
publisher |
Hindawi Limited |
series |
International Journal of Mathematics and Mathematical Sciences |
issn |
0161-1712 1687-0425 |
publishDate |
2013-01-01 |
description |
We give an Ulam type stability result for the following functional equation: f(αx−αx′+x0)=βf(x)−βf(x′)+y0 (for all x,x′∈X)
under a suitable condition. We also give a concrete stability result for the case taking up δ∥x∥p∥x′∥q as a control function. |
url |
http://dx.doi.org/10.1155/2013/109754 |
work_keys_str_mv |
AT hiroyoshioda theulamtypestabilityofageneralizedadditivemappingandconcreteexamples AT makototsukada theulamtypestabilityofageneralizedadditivemappingandconcreteexamples AT takeshimiura theulamtypestabilityofageneralizedadditivemappingandconcreteexamples AT yujikobayashi theulamtypestabilityofageneralizedadditivemappingandconcreteexamples AT sineitakahasi theulamtypestabilityofageneralizedadditivemappingandconcreteexamples AT hiroyoshioda ulamtypestabilityofageneralizedadditivemappingandconcreteexamples AT makototsukada ulamtypestabilityofageneralizedadditivemappingandconcreteexamples AT takeshimiura ulamtypestabilityofageneralizedadditivemappingandconcreteexamples AT yujikobayashi ulamtypestabilityofageneralizedadditivemappingandconcreteexamples AT sineitakahasi ulamtypestabilityofageneralizedadditivemappingandconcreteexamples |
_version_ |
1725648187873558528 |