Constacyclic codes over 𝔽pm[u1, u2,⋯,uk]/〈 ui2 = ui, uiuj = ujui〉

In this paper, we study linear codes over ring Rk = 𝔽pm[u1, u2,⋯,uk]/〈ui2$\begin{array}{} u^{2}_{i} \end{array} $ = ui, uiuj = ujui〉 where k ≥ 1 and 1 ≤ i, j ≤ k. We define a Gray map from RkntoFpm2kn$\begin{array}{} R_{k}^n\,\,\text{to}\,\,{\mathbb F}_{p^m}^{2^kn} \end{array} $ and give the generat...

Full description

Bibliographic Details
Main Authors: Zheng Xiying, Kong Bo
Format: Article
Language:English
Published: De Gruyter 2018-05-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2018-0045
Description
Summary:In this paper, we study linear codes over ring Rk = 𝔽pm[u1, u2,⋯,uk]/〈ui2$\begin{array}{} u^{2}_{i} \end{array} $ = ui, uiuj = ujui〉 where k ≥ 1 and 1 ≤ i, j ≤ k. We define a Gray map from RkntoFpm2kn$\begin{array}{} R_{k}^n\,\,\text{to}\,\,{\mathbb F}_{p^m}^{2^kn} \end{array} $ and give the generator polynomials of constacyclic codes over Rk. We also study the MacWilliams identities of linear codes over Rk.
ISSN:2391-5455