Constacyclic codes over 𝔽pm[u1, u2,⋯,uk]/〈 ui2 = ui, uiuj = ujui〉
In this paper, we study linear codes over ring Rk = 𝔽pm[u1, u2,⋯,uk]/〈ui2$\begin{array}{} u^{2}_{i} \end{array} $ = ui, uiuj = ujui〉 where k ≥ 1 and 1 ≤ i, j ≤ k. We define a Gray map from RkntoFpm2kn$\begin{array}{} R_{k}^n\,\,\text{to}\,\,{\mathbb F}_{p^m}^{2^kn} \end{array} $ and give the generat...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2018-05-01
|
Series: | Open Mathematics |
Subjects: | |
Online Access: | https://doi.org/10.1515/math-2018-0045 |
Summary: | In this paper, we study linear codes over ring Rk = 𝔽pm[u1, u2,⋯,uk]/〈ui2$\begin{array}{}
u^{2}_{i}
\end{array} $ = ui, uiuj = ujui〉 where k ≥ 1 and 1 ≤ i, j ≤ k. We define a Gray map from RkntoFpm2kn$\begin{array}{}
R_{k}^n\,\,\text{to}\,\,{\mathbb F}_{p^m}^{2^kn}
\end{array} $ and give the generator polynomials of constacyclic codes over Rk. We also study the MacWilliams identities of linear codes over Rk. |
---|---|
ISSN: | 2391-5455 |