Optimization of the Propulsive Efficiency of a Fast Catamaran

The present study deals with the local optimization of the stern area and of the propulsive efficiency of a battery-driven, fast catamaran vessel. The adopted approach considers a parametric model for the catamaran’s innovative transom stern and a QCM (Quasi-Continuous Method) body-force model for t...

Full description

Bibliographic Details
Main Authors: Yan Xing-Kaeding, Apostolos Papanikolaou
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/9/5/492
Description
Summary:The present study deals with the local optimization of the stern area and of the propulsive efficiency of a battery-driven, fast catamaran vessel. The adopted approach considers a parametric model for the catamaran’s innovative transom stern and a QCM (Quasi-Continuous Method) body-force model for the effect of the fitted propellers. Hydrodynamic calculations were performed by the CFD code FreSCO<sup>+</sup>, which also enabled a deep analysis of the incurring unique propulsive phenomena. Numerical results of achieved high propulsive efficiency were verified by model experiments at the Hamburgische Schiffbau Versuchsanstalt (HSVA), proving the feasibility of the concept.
ISSN:2077-1312