Modeling, simulation and experimental research for MEMS cantilevers of complex geometry

The fundamental resonant frequencies for MEMS cantilevers of complex geometry (paddle-shaped rectangular microbeam, homogeneous on a part of length and nonhomogeneous, layered structure to the wider part of the beam) are calculated. A method of analytical calculation using the Mohr-Maxwell theory is...

Full description

Bibliographic Details
Main Authors: Sandu Adriana, Bogatu Lucian, Ionascu Georgeta, Manea Elena, Gheorghe Viorel
Format: Article
Language:English
Published: EDP Sciences 2019-01-01
Series:MATEC Web of Conferences
Online Access:https://www.matec-conferences.org/articles/matecconf/pdf/2019/39/matecconf_mse2019_08002.pdf
Description
Summary:The fundamental resonant frequencies for MEMS cantilevers of complex geometry (paddle-shaped rectangular microbeam, homogeneous on a part of length and nonhomogeneous, layered structure to the wider part of the beam) are calculated. A method of analytical calculation using the Mohr-Maxwell theory is proposed for homogeneous microcantilevers, which is then adapted for non-homogeneous structures. The analytical model has been validated by numerical simulation using finite element method (FEM). The experimental validation has been made using laser-Doppler vibrometry (LDV) by scanning with the Polytec MSA-500 system.
ISSN:2261-236X