Insulin-like Growth Factor-Dependent Proliferation and Survival of Triple-Negative Breast Cancer Cells: Implications for Therapy

Triple-negative breast cancers have a poor prognosis and are not amenable to endocrine- or HER2-targeted therapies. The prevailing view is that targeting the insulin-like growth factor (IGF) signal transduction pathway will not be beneficial for triple-negative breast cancers because their growth i...

Full description

Bibliographic Details
Main Authors: Zoë Davison, Gail E. de Blacquière, Bruce R. Westley, Felicity E.B. May
Format: Article
Language:English
Published: Elsevier 2011-06-01
Series:Neoplasia: An International Journal for Oncology Research
Online Access:http://www.sciencedirect.com/science/article/pii/S1476558611800424
Description
Summary:Triple-negative breast cancers have a poor prognosis and are not amenable to endocrine- or HER2-targeted therapies. The prevailing view is that targeting the insulin-like growth factor (IGF) signal transduction pathway will not be beneficial for triple-negative breast cancers because their growth is not IGF-responsive. The present study investigates the importance of IGFs in the proliferation and survival of triple-negative breast cancer cells. Estrogen and progesterone receptors, HER2, type I IGF, and insulin receptors were measured by Western transfer analysis. The effects of IGF-1 on proliferation were assessed by DNA quantitation and on cell survival by poly (ADP-ribose) polymerase cleavage. The effect of IGF-1 on phosphorylation of the IGF receptors, Akt and mitogen-activated protein kinase, was measured by Western transfer analysis. Seven cell lines were identified as models of triple-negative breast cancer and shown to express IGF receptors at levels similar to those present in estrogen-responsive cell lines known to respond to IGFs. IGF-1 increased the proliferation and cell survival of all triple-negative cell lines. Proliferation was attenuated after reduction of type I IGF receptor expression. Cells that express higher levels of receptor were more sensitive to subnanomolar IGF-1 concentrations, but the magnitude of the effects was not correlated simply with the absolute amount or phosphorylation of the IGF receptors, Akt or mitogen-activated protein kinase. These results show that IGFs stimulate cell proliferation and promote cell survival in triple-negative breast cancer cells and warrant investigation of the IGF signal transduction pathway as a therapeutic target for the treatment of triple-negative breast cancer.
ISSN:1476-5586
1522-8002