Summary: | The caecum is the primary site where microbial fermentation and acidosis occurred. The supplementation of starter feed and alfalfa hay has the potential to influence caecal microbiota and then affect caecal fermentation. This study aims to investigate the effect of starter feed and alfalfa hay supplementation on caecal microbiota, immune homeostasis, and growth of preweaning yaks. Twenty 30-day-old male yak calves were randomly assigned to four groups, which separately fed with milk replacer (CON group), milk replacer with alfalfa hay (A group), milk replacer with starter feed (S group), and milk replacer with starter feed plus alfalfa hay (SA group) throughout the trial. Growth performance and plasma physiological and biochemical indicators were measured every 30 days. Calves were sacrificed at 120 days of age. The caecal contents were collected for measuring pH and contents of volatile fatty acids (VFAs) and lipopolysaccharide (LPS) and for characterizing caecal microbiota. The results indicated that individual or simultaneous supplementation with alfalfa hay and starter feed all significantly increased the BW, body height, body length, and chest girth of yak calves. However, supplementation with starter feed significantly increased plasma cortisol, nitric oxide, tumor necrosis factor-α, and interferon-γ concentrations and the ratio of aspartate aminotransferase to alanine aminotransferase of yak calves when compared with the control and alfalfa hay feeding groups, while the co-supplementation of starter feed and alfalfa hay could significantly decrease these inflammation-related indices when compared with the starter feeding group. Sequencing of the 16S rRNA gene showed that starter feed and alfalfa hay separately stimulated the proliferation of starch-decomposing and cellulose- or hemicellulose-decomposing bacteria. This also significantly increased the levels of acetate, propionate, butyrate, valerate, isobutyrate, and isovalerate in the caecal contents. Furthermore, compared with the S and CON groups, the significantly increased genera of Desulfobulbus, Olsenella, Pseudoflavonifractor, and Stomatobaculum in the SA and A groups were beneficial to the immune homeostasis, and the significantly decreased Blautia, Clostridium IV, Bacteroides, Eubacterium, Clostridium XVIII, and Mogibacterium in the SA and A groups were related to the reduced caecal lactate and LPS contents, the decreased inflammatory reaction, and the improved healthy hepatic condition of yak calves. In conclusion, milk replacer supplemented with alfalfa hay and starter feed is recommended during preweaning to improve yak calf health and growth because this regimen promotes the growth and maintains the immune homeostasis of yak calves.
|