Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem

This work deals with the interior transmission eigenvalue problem: $y'' + {k^2}\eta \left( r \right)y = 0$ with boundary conditions ${y\left( 0 \right) = 0 = y'\left( 1 \right)\frac{{\sin k}}{k} - y\left( 1 \right)\cos k},$ where the function $\eta(r)$ is positive. We obtain the asymp...

Full description

Bibliographic Details
Main Authors: Xiao-Chuan Xu, Chuan-Fu Yang, Sergey Buterin, Vjacheslav Yurko
Format: Article
Language:English
Published: University of Szeged 2019-06-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7380
id doaj-af5ffeb07b0742ffbb84719f46d84af7
record_format Article
spelling doaj-af5ffeb07b0742ffbb84719f46d84af72021-07-14T07:21:32ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752019-06-0120193811510.14232/ejqtde.2019.1.387380Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problemXiao-Chuan Xu0Chuan-Fu Yang1Sergey Buterin2Vjacheslav Yurko3School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, P.R. China,Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing, Jiangsu, P.R. ChinaDepartment of Mathematics, Saratov State University, Saratov, RussiaDepartment of Mathematics, Saratov State University, Saratov, RussiaThis work deals with the interior transmission eigenvalue problem: $y'' + {k^2}\eta \left( r \right)y = 0$ with boundary conditions ${y\left( 0 \right) = 0 = y'\left( 1 \right)\frac{{\sin k}}{k} - y\left( 1 \right)\cos k},$ where the function $\eta(r)$ is positive. We obtain the asymptotic distribution of non-real transmission eigenvalues under the suitable assumption on the square of the index of refraction $\eta(r)$. Moreover, we provide a uniqueness theorem for the case $\int_0^1\sqrt{\eta(r)}dr>1$, by using all transmission eigenvalues (including their multiplicities) along with a partial information of $\eta(r)$ on the subinterval. The relationship between the proportion of the needed transmission eigenvalues and the length of the subinterval on the given $\eta(r)$ is also obtained.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7380transmission eigenvalue problemscattering theorycomplex eigenvalueinverse spectral problem
collection DOAJ
language English
format Article
sources DOAJ
author Xiao-Chuan Xu
Chuan-Fu Yang
Sergey Buterin
Vjacheslav Yurko
spellingShingle Xiao-Chuan Xu
Chuan-Fu Yang
Sergey Buterin
Vjacheslav Yurko
Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem
Electronic Journal of Qualitative Theory of Differential Equations
transmission eigenvalue problem
scattering theory
complex eigenvalue
inverse spectral problem
author_facet Xiao-Chuan Xu
Chuan-Fu Yang
Sergey Buterin
Vjacheslav Yurko
author_sort Xiao-Chuan Xu
title Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem
title_short Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem
title_full Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem
title_fullStr Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem
title_full_unstemmed Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem
title_sort estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2019-06-01
description This work deals with the interior transmission eigenvalue problem: $y'' + {k^2}\eta \left( r \right)y = 0$ with boundary conditions ${y\left( 0 \right) = 0 = y'\left( 1 \right)\frac{{\sin k}}{k} - y\left( 1 \right)\cos k},$ where the function $\eta(r)$ is positive. We obtain the asymptotic distribution of non-real transmission eigenvalues under the suitable assumption on the square of the index of refraction $\eta(r)$. Moreover, we provide a uniqueness theorem for the case $\int_0^1\sqrt{\eta(r)}dr>1$, by using all transmission eigenvalues (including their multiplicities) along with a partial information of $\eta(r)$ on the subinterval. The relationship between the proportion of the needed transmission eigenvalues and the length of the subinterval on the given $\eta(r)$ is also obtained.
topic transmission eigenvalue problem
scattering theory
complex eigenvalue
inverse spectral problem
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7380
work_keys_str_mv AT xiaochuanxu estimatesofcomplexeigenvaluesandaninversespectralproblemforthetransmissioneigenvalueproblem
AT chuanfuyang estimatesofcomplexeigenvaluesandaninversespectralproblemforthetransmissioneigenvalueproblem
AT sergeybuterin estimatesofcomplexeigenvaluesandaninversespectralproblemforthetransmissioneigenvalueproblem
AT vjacheslavyurko estimatesofcomplexeigenvaluesandaninversespectralproblemforthetransmissioneigenvalueproblem
_version_ 1721303508511096832