Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem
This work deals with the interior transmission eigenvalue problem: $y'' + {k^2}\eta \left( r \right)y = 0$ with boundary conditions ${y\left( 0 \right) = 0 = y'\left( 1 \right)\frac{{\sin k}}{k} - y\left( 1 \right)\cos k},$ where the function $\eta(r)$ is positive. We obtain the asymp...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2019-06-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=7380 |
id |
doaj-af5ffeb07b0742ffbb84719f46d84af7 |
---|---|
record_format |
Article |
spelling |
doaj-af5ffeb07b0742ffbb84719f46d84af72021-07-14T07:21:32ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752019-06-0120193811510.14232/ejqtde.2019.1.387380Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problemXiao-Chuan Xu0Chuan-Fu Yang1Sergey Buterin2Vjacheslav Yurko3School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, P.R. China,Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing, Jiangsu, P.R. ChinaDepartment of Mathematics, Saratov State University, Saratov, RussiaDepartment of Mathematics, Saratov State University, Saratov, RussiaThis work deals with the interior transmission eigenvalue problem: $y'' + {k^2}\eta \left( r \right)y = 0$ with boundary conditions ${y\left( 0 \right) = 0 = y'\left( 1 \right)\frac{{\sin k}}{k} - y\left( 1 \right)\cos k},$ where the function $\eta(r)$ is positive. We obtain the asymptotic distribution of non-real transmission eigenvalues under the suitable assumption on the square of the index of refraction $\eta(r)$. Moreover, we provide a uniqueness theorem for the case $\int_0^1\sqrt{\eta(r)}dr>1$, by using all transmission eigenvalues (including their multiplicities) along with a partial information of $\eta(r)$ on the subinterval. The relationship between the proportion of the needed transmission eigenvalues and the length of the subinterval on the given $\eta(r)$ is also obtained.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=7380transmission eigenvalue problemscattering theorycomplex eigenvalueinverse spectral problem |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Xiao-Chuan Xu Chuan-Fu Yang Sergey Buterin Vjacheslav Yurko |
spellingShingle |
Xiao-Chuan Xu Chuan-Fu Yang Sergey Buterin Vjacheslav Yurko Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem Electronic Journal of Qualitative Theory of Differential Equations transmission eigenvalue problem scattering theory complex eigenvalue inverse spectral problem |
author_facet |
Xiao-Chuan Xu Chuan-Fu Yang Sergey Buterin Vjacheslav Yurko |
author_sort |
Xiao-Chuan Xu |
title |
Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem |
title_short |
Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem |
title_full |
Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem |
title_fullStr |
Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem |
title_full_unstemmed |
Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem |
title_sort |
estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
2019-06-01 |
description |
This work deals with the interior transmission eigenvalue problem: $y'' + {k^2}\eta \left( r \right)y = 0$ with boundary conditions ${y\left( 0 \right) = 0 = y'\left( 1 \right)\frac{{\sin k}}{k} - y\left( 1 \right)\cos k},$ where the function $\eta(r)$ is positive. We obtain the asymptotic distribution of non-real transmission eigenvalues under the suitable assumption on the square of the index of refraction $\eta(r)$. Moreover, we provide a uniqueness theorem for the case $\int_0^1\sqrt{\eta(r)}dr>1$, by using all transmission eigenvalues (including their multiplicities) along with a partial information of $\eta(r)$ on the subinterval. The relationship between the proportion of the needed transmission eigenvalues and the length of the subinterval on the given $\eta(r)$ is also obtained. |
topic |
transmission eigenvalue problem scattering theory complex eigenvalue inverse spectral problem |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=7380 |
work_keys_str_mv |
AT xiaochuanxu estimatesofcomplexeigenvaluesandaninversespectralproblemforthetransmissioneigenvalueproblem AT chuanfuyang estimatesofcomplexeigenvaluesandaninversespectralproblemforthetransmissioneigenvalueproblem AT sergeybuterin estimatesofcomplexeigenvaluesandaninversespectralproblemforthetransmissioneigenvalueproblem AT vjacheslavyurko estimatesofcomplexeigenvaluesandaninversespectralproblemforthetransmissioneigenvalueproblem |
_version_ |
1721303508511096832 |