Quantifying Fluorescently Labeled Ceramide Levels in Human Sarcoma Cell Lines in Response to a Sphingomyelin Synthase Inhibitor
Sphingolipid metabolism is an important process in sustaining the growth needs of rapidly dividing cancer cells. Enzymes that synthesize sphingolipids have become attractive targets in cancer pharmacology. Ceramide is a precursor for synthesizing sphingolipids such as sphingomyelin, sphingosine-1-ph...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-08-01
|
Series: | Methods and Protocols |
Subjects: | |
Online Access: | https://www.mdpi.com/2409-9279/2/3/76 |
id |
doaj-af4669e9b0d049a0a9f62674f3ed8637 |
---|---|
record_format |
Article |
spelling |
doaj-af4669e9b0d049a0a9f62674f3ed86372020-11-25T01:24:04ZengMDPI AGMethods and Protocols2409-92792019-08-01237610.3390/mps2030076mps2030076Quantifying Fluorescently Labeled Ceramide Levels in Human Sarcoma Cell Lines in Response to a Sphingomyelin Synthase InhibitorSrinath Pashikanti0Farjana Afrin1Trevor C. Meldrum2John L. Stegelmeier3Adriene Pavek4Yashar A. Habashi5Kaniz Fatema6Jared J. Barrott7Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USADepartment of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USADepartment of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USADepartment of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USADepartment of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USADepartment of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USADepartment of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USADepartment of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USASphingolipid metabolism is an important process in sustaining the growth needs of rapidly dividing cancer cells. Enzymes that synthesize sphingolipids have become attractive targets in cancer pharmacology. Ceramide is a precursor for synthesizing sphingolipids such as sphingomyelin, sphingosine-1-phosphate, and glucosylceramide. Sphingomyelin synthase (SMS) is the enzyme that transfers a phosphatidylcholine to ceramide to generate sphingomyelin. To test the inhibition of SMS, scientists assess the buildup of ceramide in the cell, which is cytotoxic. Because ceramide is a small lipid molecule, there are limited tools like antibodies to detect its presence. Alternatively, designated machines for small-molecule separation coupled with mass spectrometry detection can be used; however, these can be cost-prohibitive. We used a commercially available NBD-ceramide to apply to human cancer cell lines in the presence or absence of a known SMS inhibitor, jaspine B. After short incubation times, we were able to collect cell lysates and using solvent extraction methods, run the cellular material on a thin-layer chromatography plate to determine the levels of intact fluorescently labeled ceramide. Brighter fluorescence on the TLC plate correlated to greater SMS inhibition. Small molecules can then be screened quantifiably to determine the biological impact of inhibiting the sphingolipid metabolism pathways involving ceramide.https://www.mdpi.com/2409-9279/2/3/76ceramidesynovial sarcomaosteosarcomasphingomyelin synthase inhibitorjaspine Bcellular assay |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Srinath Pashikanti Farjana Afrin Trevor C. Meldrum John L. Stegelmeier Adriene Pavek Yashar A. Habashi Kaniz Fatema Jared J. Barrott |
spellingShingle |
Srinath Pashikanti Farjana Afrin Trevor C. Meldrum John L. Stegelmeier Adriene Pavek Yashar A. Habashi Kaniz Fatema Jared J. Barrott Quantifying Fluorescently Labeled Ceramide Levels in Human Sarcoma Cell Lines in Response to a Sphingomyelin Synthase Inhibitor Methods and Protocols ceramide synovial sarcoma osteosarcoma sphingomyelin synthase inhibitor jaspine B cellular assay |
author_facet |
Srinath Pashikanti Farjana Afrin Trevor C. Meldrum John L. Stegelmeier Adriene Pavek Yashar A. Habashi Kaniz Fatema Jared J. Barrott |
author_sort |
Srinath Pashikanti |
title |
Quantifying Fluorescently Labeled Ceramide Levels in Human Sarcoma Cell Lines in Response to a Sphingomyelin Synthase Inhibitor |
title_short |
Quantifying Fluorescently Labeled Ceramide Levels in Human Sarcoma Cell Lines in Response to a Sphingomyelin Synthase Inhibitor |
title_full |
Quantifying Fluorescently Labeled Ceramide Levels in Human Sarcoma Cell Lines in Response to a Sphingomyelin Synthase Inhibitor |
title_fullStr |
Quantifying Fluorescently Labeled Ceramide Levels in Human Sarcoma Cell Lines in Response to a Sphingomyelin Synthase Inhibitor |
title_full_unstemmed |
Quantifying Fluorescently Labeled Ceramide Levels in Human Sarcoma Cell Lines in Response to a Sphingomyelin Synthase Inhibitor |
title_sort |
quantifying fluorescently labeled ceramide levels in human sarcoma cell lines in response to a sphingomyelin synthase inhibitor |
publisher |
MDPI AG |
series |
Methods and Protocols |
issn |
2409-9279 |
publishDate |
2019-08-01 |
description |
Sphingolipid metabolism is an important process in sustaining the growth needs of rapidly dividing cancer cells. Enzymes that synthesize sphingolipids have become attractive targets in cancer pharmacology. Ceramide is a precursor for synthesizing sphingolipids such as sphingomyelin, sphingosine-1-phosphate, and glucosylceramide. Sphingomyelin synthase (SMS) is the enzyme that transfers a phosphatidylcholine to ceramide to generate sphingomyelin. To test the inhibition of SMS, scientists assess the buildup of ceramide in the cell, which is cytotoxic. Because ceramide is a small lipid molecule, there are limited tools like antibodies to detect its presence. Alternatively, designated machines for small-molecule separation coupled with mass spectrometry detection can be used; however, these can be cost-prohibitive. We used a commercially available NBD-ceramide to apply to human cancer cell lines in the presence or absence of a known SMS inhibitor, jaspine B. After short incubation times, we were able to collect cell lysates and using solvent extraction methods, run the cellular material on a thin-layer chromatography plate to determine the levels of intact fluorescently labeled ceramide. Brighter fluorescence on the TLC plate correlated to greater SMS inhibition. Small molecules can then be screened quantifiably to determine the biological impact of inhibiting the sphingolipid metabolism pathways involving ceramide. |
topic |
ceramide synovial sarcoma osteosarcoma sphingomyelin synthase inhibitor jaspine B cellular assay |
url |
https://www.mdpi.com/2409-9279/2/3/76 |
work_keys_str_mv |
AT srinathpashikanti quantifyingfluorescentlylabeledceramidelevelsinhumansarcomacelllinesinresponsetoasphingomyelinsynthaseinhibitor AT farjanaafrin quantifyingfluorescentlylabeledceramidelevelsinhumansarcomacelllinesinresponsetoasphingomyelinsynthaseinhibitor AT trevorcmeldrum quantifyingfluorescentlylabeledceramidelevelsinhumansarcomacelllinesinresponsetoasphingomyelinsynthaseinhibitor AT johnlstegelmeier quantifyingfluorescentlylabeledceramidelevelsinhumansarcomacelllinesinresponsetoasphingomyelinsynthaseinhibitor AT adrienepavek quantifyingfluorescentlylabeledceramidelevelsinhumansarcomacelllinesinresponsetoasphingomyelinsynthaseinhibitor AT yasharahabashi quantifyingfluorescentlylabeledceramidelevelsinhumansarcomacelllinesinresponsetoasphingomyelinsynthaseinhibitor AT kanizfatema quantifyingfluorescentlylabeledceramidelevelsinhumansarcomacelllinesinresponsetoasphingomyelinsynthaseinhibitor AT jaredjbarrott quantifyingfluorescentlylabeledceramidelevelsinhumansarcomacelllinesinresponsetoasphingomyelinsynthaseinhibitor |
_version_ |
1725119075762307072 |