Genetic evolution of low pathogenecity H9N2 Avian influenza viruses in Tunisia: acquisition of new mutations

<p>Abstract</p> <p>Background</p> <p>Since the end of 2009, H9N2 has emerged in Tunisia causing several epidemics in poultry industry resulting in major economic losses. To monitor variations of Influenza viruses during the outbreaks, Tunisian H9N2 virus isolates were i...

Full description

Bibliographic Details
Main Authors: Tombari Wafa, Nsiri Jihene, Larbi Imen, Guerin Jean, Ghram Abdeljelil
Format: Article
Language:English
Published: BMC 2011-10-01
Series:Virology Journal
Online Access:http://www.virologyj.com/content/8/1/467
id doaj-af1dbb5b07bf4aa0995f80c4cabf91b2
record_format Article
spelling doaj-af1dbb5b07bf4aa0995f80c4cabf91b22020-11-24T20:48:15ZengBMCVirology Journal1743-422X2011-10-018146710.1186/1743-422X-8-467Genetic evolution of low pathogenecity H9N2 Avian influenza viruses in Tunisia: acquisition of new mutationsTombari WafaNsiri JiheneLarbi ImenGuerin JeanGhram Abdeljelil<p>Abstract</p> <p>Background</p> <p>Since the end of 2009, H9N2 has emerged in Tunisia causing several epidemics in poultry industry resulting in major economic losses. To monitor variations of Influenza viruses during the outbreaks, Tunisian H9N2 virus isolates were identified and genetically characterized.</p> <p>Methods</p> <p>The genomic RNA segments of Tunisian H9N2 strains were subjected to RT-PCR amplifications followed by sequencing analysis.</p> <p>Results</p> <p>Phylogenetic analysis demonstrated that A/Ck/TUN/12/10 and A/Migratory Bird/TUN/51/10 viruses represent multiple reassortant lineages, with genes coming from Middle East strains, and share the common ancestor Qa/HK/G1/97 isolate which has contributed internal genes of H5N1 virus circulating in Asia. Some of the internal genes seemed to have undergone broad reassortments with other influenza subtypes. Deduced amino acid sequences of the hemagglutinin (HA) gene showed the presence of additional glycosylation site and Leu at position 234 indicating to binding preference to α (2, 6) sialic acid receptors, indicating their potential to directly infect humans. The Hemagglutinin cleavage site motif sequence is <b><sup>333 </sup>PARSSR*GLF<sup>341 </sup></b>which indicates the low pathogenicity nature of the Tunisian H9N2 strains and the potential to acquire the basic amino acids required for the highly pathogenic strains. Their neuraminidase protein (NA) carried substitutions in the hemadsorption (HB) site, similar to those of other avian H9N2 viruses from Asia, Middle Eastern and human pandemic H2N2 and H3N2 that bind to α -2, 6 -linked receptors. Two avian virus-like aa at positions 661 (A) and 702 (K), similar to H5N1 strains, were identified in the polymerase (PB2) protein. Likewise, matrix (M) protein carried some substitutions which are linked with increasing replication in mammals. In addition, H9N2 strain recently circulating carried new polymorphism, "GSEV" PDZ ligand (PL) C-terminal motif in its non structural (NS) protein.</p> <p>Two new aa substitutions (I) and (V), that haven't been previously reported, were identified in the polymerase and matrix proteins, respectively. Nucleoprotein and non-structural protein carried some substitutions similar to H5N1 strains.</p> <p>Conclusion</p> <p>Considering these new mutations, the molecular basis of tropism, host responses and enhanced virulence will be defined and studied. Otherwise, Continuous monitoring of viral genetic changes throughout the year is warranted to monitor variations of Influenza viruses in the field.</p> http://www.virologyj.com/content/8/1/467
collection DOAJ
language English
format Article
sources DOAJ
author Tombari Wafa
Nsiri Jihene
Larbi Imen
Guerin Jean
Ghram Abdeljelil
spellingShingle Tombari Wafa
Nsiri Jihene
Larbi Imen
Guerin Jean
Ghram Abdeljelil
Genetic evolution of low pathogenecity H9N2 Avian influenza viruses in Tunisia: acquisition of new mutations
Virology Journal
author_facet Tombari Wafa
Nsiri Jihene
Larbi Imen
Guerin Jean
Ghram Abdeljelil
author_sort Tombari Wafa
title Genetic evolution of low pathogenecity H9N2 Avian influenza viruses in Tunisia: acquisition of new mutations
title_short Genetic evolution of low pathogenecity H9N2 Avian influenza viruses in Tunisia: acquisition of new mutations
title_full Genetic evolution of low pathogenecity H9N2 Avian influenza viruses in Tunisia: acquisition of new mutations
title_fullStr Genetic evolution of low pathogenecity H9N2 Avian influenza viruses in Tunisia: acquisition of new mutations
title_full_unstemmed Genetic evolution of low pathogenecity H9N2 Avian influenza viruses in Tunisia: acquisition of new mutations
title_sort genetic evolution of low pathogenecity h9n2 avian influenza viruses in tunisia: acquisition of new mutations
publisher BMC
series Virology Journal
issn 1743-422X
publishDate 2011-10-01
description <p>Abstract</p> <p>Background</p> <p>Since the end of 2009, H9N2 has emerged in Tunisia causing several epidemics in poultry industry resulting in major economic losses. To monitor variations of Influenza viruses during the outbreaks, Tunisian H9N2 virus isolates were identified and genetically characterized.</p> <p>Methods</p> <p>The genomic RNA segments of Tunisian H9N2 strains were subjected to RT-PCR amplifications followed by sequencing analysis.</p> <p>Results</p> <p>Phylogenetic analysis demonstrated that A/Ck/TUN/12/10 and A/Migratory Bird/TUN/51/10 viruses represent multiple reassortant lineages, with genes coming from Middle East strains, and share the common ancestor Qa/HK/G1/97 isolate which has contributed internal genes of H5N1 virus circulating in Asia. Some of the internal genes seemed to have undergone broad reassortments with other influenza subtypes. Deduced amino acid sequences of the hemagglutinin (HA) gene showed the presence of additional glycosylation site and Leu at position 234 indicating to binding preference to α (2, 6) sialic acid receptors, indicating their potential to directly infect humans. The Hemagglutinin cleavage site motif sequence is <b><sup>333 </sup>PARSSR*GLF<sup>341 </sup></b>which indicates the low pathogenicity nature of the Tunisian H9N2 strains and the potential to acquire the basic amino acids required for the highly pathogenic strains. Their neuraminidase protein (NA) carried substitutions in the hemadsorption (HB) site, similar to those of other avian H9N2 viruses from Asia, Middle Eastern and human pandemic H2N2 and H3N2 that bind to α -2, 6 -linked receptors. Two avian virus-like aa at positions 661 (A) and 702 (K), similar to H5N1 strains, were identified in the polymerase (PB2) protein. Likewise, matrix (M) protein carried some substitutions which are linked with increasing replication in mammals. In addition, H9N2 strain recently circulating carried new polymorphism, "GSEV" PDZ ligand (PL) C-terminal motif in its non structural (NS) protein.</p> <p>Two new aa substitutions (I) and (V), that haven't been previously reported, were identified in the polymerase and matrix proteins, respectively. Nucleoprotein and non-structural protein carried some substitutions similar to H5N1 strains.</p> <p>Conclusion</p> <p>Considering these new mutations, the molecular basis of tropism, host responses and enhanced virulence will be defined and studied. Otherwise, Continuous monitoring of viral genetic changes throughout the year is warranted to monitor variations of Influenza viruses in the field.</p>
url http://www.virologyj.com/content/8/1/467
work_keys_str_mv AT tombariwafa geneticevolutionoflowpathogenecityh9n2avianinfluenzavirusesintunisiaacquisitionofnewmutations
AT nsirijihene geneticevolutionoflowpathogenecityh9n2avianinfluenzavirusesintunisiaacquisitionofnewmutations
AT larbiimen geneticevolutionoflowpathogenecityh9n2avianinfluenzavirusesintunisiaacquisitionofnewmutations
AT guerinjean geneticevolutionoflowpathogenecityh9n2avianinfluenzavirusesintunisiaacquisitionofnewmutations
AT ghramabdeljelil geneticevolutionoflowpathogenecityh9n2avianinfluenzavirusesintunisiaacquisitionofnewmutations
_version_ 1716808421515198464