Minimal hypersurfaces in Rn as regular values of a function
In this paper we prove that if M = /_1(0) is a minimal hypersurface of Rn, where / : V C Rn -► R is a smooth function defined on a open set V, then / must satisfy the equation |V/|2A/ = |(V|V/|2,V/} for every x € M. We will also prove that if M is the zero level set of a homogeneous 2 polynomial, th...
Main Author: | |
---|---|
Format: | Article |
Language: | Spanish |
Published: |
Universidad Industrial de Santander
2004-09-01
|
Series: | Revista Integración |
Subjects: | |
Online Access: | https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/481 |
id |
doaj-af109710abf94686a97e5751def9e7fa |
---|---|
record_format |
Article |
spelling |
doaj-af109710abf94686a97e5751def9e7fa2020-11-25T01:37:51ZspaUniversidad Industrial de SantanderRevista Integración0120-419X2145-84722004-09-01221 y 2Minimal hypersurfaces in Rn as regular values of a functionÓscar Mario Perdomo0Universidad del ValleIn this paper we prove that if M = /_1(0) is a minimal hypersurface of Rn, where / : V C Rn -► R is a smooth function defined on a open set V, then / must satisfy the equation |V/|2A/ = |(V|V/|2,V/} for every x € M. We will also prove that if M is the zero level set of a homogeneous 2 polynomial, then M must be a Clifford minimal hypersurface. https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/481minimal hypersurfaces in RnClifford minimal hypersurface |
collection |
DOAJ |
language |
Spanish |
format |
Article |
sources |
DOAJ |
author |
Óscar Mario Perdomo |
spellingShingle |
Óscar Mario Perdomo Minimal hypersurfaces in Rn as regular values of a function Revista Integración minimal hypersurfaces in Rn Clifford minimal hypersurface |
author_facet |
Óscar Mario Perdomo |
author_sort |
Óscar Mario Perdomo |
title |
Minimal hypersurfaces in Rn as regular values of a function |
title_short |
Minimal hypersurfaces in Rn as regular values of a function |
title_full |
Minimal hypersurfaces in Rn as regular values of a function |
title_fullStr |
Minimal hypersurfaces in Rn as regular values of a function |
title_full_unstemmed |
Minimal hypersurfaces in Rn as regular values of a function |
title_sort |
minimal hypersurfaces in rn as regular values of a function |
publisher |
Universidad Industrial de Santander |
series |
Revista Integración |
issn |
0120-419X 2145-8472 |
publishDate |
2004-09-01 |
description |
In this paper we prove that if M = /_1(0) is a minimal hypersurface of Rn, where / : V C Rn -► R is a smooth function defined on a open set V, then / must satisfy the equation |V/|2A/ = |(V|V/|2,V/} for every x € M. We will also prove that if M is the zero level set of a homogeneous 2 polynomial, then M must be a Clifford minimal hypersurface.
|
topic |
minimal hypersurfaces in Rn Clifford minimal hypersurface |
url |
https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/481 |
work_keys_str_mv |
AT oscarmarioperdomo minimalhypersurfacesinrnasregularvaluesofafunction |
_version_ |
1725056948729020416 |