Minimal hypersurfaces in Rn as regular values of a function

In this paper we prove that if M = /_1(0) is a minimal hypersurface of Rn, where / : V C Rn -► R is a smooth function defined on a open set V, then / must satisfy the equation |V/|2A/ = |(V|V/|2,V/} for every x € M. We will also prove that if M is the zero level set of a homogeneous 2 polynomial, th...

Full description

Bibliographic Details
Main Author: Óscar Mario Perdomo
Format: Article
Language:Spanish
Published: Universidad Industrial de Santander 2004-09-01
Series:Revista Integración
Subjects:
Online Access:https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/481
id doaj-af109710abf94686a97e5751def9e7fa
record_format Article
spelling doaj-af109710abf94686a97e5751def9e7fa2020-11-25T01:37:51ZspaUniversidad Industrial de SantanderRevista Integración0120-419X2145-84722004-09-01221 y 2Minimal hypersurfaces in Rn as regular values of a functionÓscar Mario Perdomo0Universidad del ValleIn this paper we prove that if M = /_1(0) is a minimal hypersurface of Rn, where / : V C Rn -► R is a smooth function defined on a open set V, then / must satisfy the equation |V/|2A/ = |(V|V/|2,V/} for every x € M. We will also prove that if M is the zero level set of a homogeneous 2 polynomial, then M must be a Clifford minimal hypersurface.    https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/481minimal hypersurfaces in RnClifford minimal hypersurface
collection DOAJ
language Spanish
format Article
sources DOAJ
author Óscar Mario Perdomo
spellingShingle Óscar Mario Perdomo
Minimal hypersurfaces in Rn as regular values of a function
Revista Integración
minimal hypersurfaces in Rn
Clifford minimal hypersurface
author_facet Óscar Mario Perdomo
author_sort Óscar Mario Perdomo
title Minimal hypersurfaces in Rn as regular values of a function
title_short Minimal hypersurfaces in Rn as regular values of a function
title_full Minimal hypersurfaces in Rn as regular values of a function
title_fullStr Minimal hypersurfaces in Rn as regular values of a function
title_full_unstemmed Minimal hypersurfaces in Rn as regular values of a function
title_sort minimal hypersurfaces in rn as regular values of a function
publisher Universidad Industrial de Santander
series Revista Integración
issn 0120-419X
2145-8472
publishDate 2004-09-01
description In this paper we prove that if M = /_1(0) is a minimal hypersurface of Rn, where / : V C Rn -► R is a smooth function defined on a open set V, then / must satisfy the equation |V/|2A/ = |(V|V/|2,V/} for every x € M. We will also prove that if M is the zero level set of a homogeneous 2 polynomial, then M must be a Clifford minimal hypersurface.   
topic minimal hypersurfaces in Rn
Clifford minimal hypersurface
url https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/481
work_keys_str_mv AT oscarmarioperdomo minimalhypersurfacesinrnasregularvaluesofafunction
_version_ 1725056948729020416