Targeting Attenuated Interferon-α to Myeloma Cells with a CD38 Antibody Induces Potent Tumor Regression with Reduced Off-Target Activity.
Interferon-α (IFNα) has been prescribed to effectively treat multiple myeloma (MM) and other malignancies for decades. Its use has waned in recent years, however, due to significant toxicity and a narrow therapeutic index (TI). We sought to improve IFNα's TI by, first, attaching it to an anti-C...
Main Authors: | , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2016-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC5017640?pdf=render |
id |
doaj-af0ab0e495eb4b33869ef919ebc721f6 |
---|---|
record_format |
Article |
spelling |
doaj-af0ab0e495eb4b33869ef919ebc721f62020-11-25T01:30:48ZengPublic Library of Science (PLoS)PLoS ONE1932-62032016-01-01119e016247210.1371/journal.pone.0162472Targeting Attenuated Interferon-α to Myeloma Cells with a CD38 Antibody Induces Potent Tumor Regression with Reduced Off-Target Activity.Sarah L PogueTetsuya TauraMingying BiYong YunAngela ShoGlen MikesellCollette BehrensMaya SokolovskyHussein HallakMoti RosenstockEric SanchezHaiming ChenJames BerensonAnthony DoyleSteffen NockDavid S WilsonInterferon-α (IFNα) has been prescribed to effectively treat multiple myeloma (MM) and other malignancies for decades. Its use has waned in recent years, however, due to significant toxicity and a narrow therapeutic index (TI). We sought to improve IFNα's TI by, first, attaching it to an anti-CD38 antibody, thereby directly targeting it to MM cells, and, second, by introducing an attenuating mutation into the IFNα portion of the fusion protein rendering it relatively inactive on normal, CD38 negative cells. This anti-CD38-IFNα(attenuated) immunocytokine, or CD38-Attenukine™, exhibits 10,000-fold increased specificity for CD38 positive cells in vitro compared to native IFNα and, significantly, is ~6,000-fold less toxic to normal bone marrow cells in vitro than native IFNα. Moreover, the attenuating mutation significantly decreases IFNα biomarker activity in cynomolgus macaques indicating that this approach may yield a better safety profile in humans than native IFNα or a non-attenuated IFNα immunocytokine. In human xenograft MM tumor models, anti-CD38-IFNα(attenuated) exerts potent anti-tumor activity in mice, inducing complete tumor regression in most cases. Furthermore, anti-CD38-IFNα(attenuated) is more efficacious than standard MM treatments (lenalidomide, bortezomib, dexamethasone) and exhibits strong synergy with lenalidomide and with bortezomib in xenograft models. Our findings suggest that tumor-targeted attenuated cytokines such as IFNα can promote robust tumor killing while minimizing systemic toxicity.http://europepmc.org/articles/PMC5017640?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sarah L Pogue Tetsuya Taura Mingying Bi Yong Yun Angela Sho Glen Mikesell Collette Behrens Maya Sokolovsky Hussein Hallak Moti Rosenstock Eric Sanchez Haiming Chen James Berenson Anthony Doyle Steffen Nock David S Wilson |
spellingShingle |
Sarah L Pogue Tetsuya Taura Mingying Bi Yong Yun Angela Sho Glen Mikesell Collette Behrens Maya Sokolovsky Hussein Hallak Moti Rosenstock Eric Sanchez Haiming Chen James Berenson Anthony Doyle Steffen Nock David S Wilson Targeting Attenuated Interferon-α to Myeloma Cells with a CD38 Antibody Induces Potent Tumor Regression with Reduced Off-Target Activity. PLoS ONE |
author_facet |
Sarah L Pogue Tetsuya Taura Mingying Bi Yong Yun Angela Sho Glen Mikesell Collette Behrens Maya Sokolovsky Hussein Hallak Moti Rosenstock Eric Sanchez Haiming Chen James Berenson Anthony Doyle Steffen Nock David S Wilson |
author_sort |
Sarah L Pogue |
title |
Targeting Attenuated Interferon-α to Myeloma Cells with a CD38 Antibody Induces Potent Tumor Regression with Reduced Off-Target Activity. |
title_short |
Targeting Attenuated Interferon-α to Myeloma Cells with a CD38 Antibody Induces Potent Tumor Regression with Reduced Off-Target Activity. |
title_full |
Targeting Attenuated Interferon-α to Myeloma Cells with a CD38 Antibody Induces Potent Tumor Regression with Reduced Off-Target Activity. |
title_fullStr |
Targeting Attenuated Interferon-α to Myeloma Cells with a CD38 Antibody Induces Potent Tumor Regression with Reduced Off-Target Activity. |
title_full_unstemmed |
Targeting Attenuated Interferon-α to Myeloma Cells with a CD38 Antibody Induces Potent Tumor Regression with Reduced Off-Target Activity. |
title_sort |
targeting attenuated interferon-α to myeloma cells with a cd38 antibody induces potent tumor regression with reduced off-target activity. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2016-01-01 |
description |
Interferon-α (IFNα) has been prescribed to effectively treat multiple myeloma (MM) and other malignancies for decades. Its use has waned in recent years, however, due to significant toxicity and a narrow therapeutic index (TI). We sought to improve IFNα's TI by, first, attaching it to an anti-CD38 antibody, thereby directly targeting it to MM cells, and, second, by introducing an attenuating mutation into the IFNα portion of the fusion protein rendering it relatively inactive on normal, CD38 negative cells. This anti-CD38-IFNα(attenuated) immunocytokine, or CD38-Attenukine™, exhibits 10,000-fold increased specificity for CD38 positive cells in vitro compared to native IFNα and, significantly, is ~6,000-fold less toxic to normal bone marrow cells in vitro than native IFNα. Moreover, the attenuating mutation significantly decreases IFNα biomarker activity in cynomolgus macaques indicating that this approach may yield a better safety profile in humans than native IFNα or a non-attenuated IFNα immunocytokine. In human xenograft MM tumor models, anti-CD38-IFNα(attenuated) exerts potent anti-tumor activity in mice, inducing complete tumor regression in most cases. Furthermore, anti-CD38-IFNα(attenuated) is more efficacious than standard MM treatments (lenalidomide, bortezomib, dexamethasone) and exhibits strong synergy with lenalidomide and with bortezomib in xenograft models. Our findings suggest that tumor-targeted attenuated cytokines such as IFNα can promote robust tumor killing while minimizing systemic toxicity. |
url |
http://europepmc.org/articles/PMC5017640?pdf=render |
work_keys_str_mv |
AT sarahlpogue targetingattenuatedinterferonatomyelomacellswithacd38antibodyinducespotenttumorregressionwithreducedofftargetactivity AT tetsuyataura targetingattenuatedinterferonatomyelomacellswithacd38antibodyinducespotenttumorregressionwithreducedofftargetactivity AT mingyingbi targetingattenuatedinterferonatomyelomacellswithacd38antibodyinducespotenttumorregressionwithreducedofftargetactivity AT yongyun targetingattenuatedinterferonatomyelomacellswithacd38antibodyinducespotenttumorregressionwithreducedofftargetactivity AT angelasho targetingattenuatedinterferonatomyelomacellswithacd38antibodyinducespotenttumorregressionwithreducedofftargetactivity AT glenmikesell targetingattenuatedinterferonatomyelomacellswithacd38antibodyinducespotenttumorregressionwithreducedofftargetactivity AT collettebehrens targetingattenuatedinterferonatomyelomacellswithacd38antibodyinducespotenttumorregressionwithreducedofftargetactivity AT mayasokolovsky targetingattenuatedinterferonatomyelomacellswithacd38antibodyinducespotenttumorregressionwithreducedofftargetactivity AT husseinhallak targetingattenuatedinterferonatomyelomacellswithacd38antibodyinducespotenttumorregressionwithreducedofftargetactivity AT motirosenstock targetingattenuatedinterferonatomyelomacellswithacd38antibodyinducespotenttumorregressionwithreducedofftargetactivity AT ericsanchez targetingattenuatedinterferonatomyelomacellswithacd38antibodyinducespotenttumorregressionwithreducedofftargetactivity AT haimingchen targetingattenuatedinterferonatomyelomacellswithacd38antibodyinducespotenttumorregressionwithreducedofftargetactivity AT jamesberenson targetingattenuatedinterferonatomyelomacellswithacd38antibodyinducespotenttumorregressionwithreducedofftargetactivity AT anthonydoyle targetingattenuatedinterferonatomyelomacellswithacd38antibodyinducespotenttumorregressionwithreducedofftargetactivity AT steffennock targetingattenuatedinterferonatomyelomacellswithacd38antibodyinducespotenttumorregressionwithreducedofftargetactivity AT davidswilson targetingattenuatedinterferonatomyelomacellswithacd38antibodyinducespotenttumorregressionwithreducedofftargetactivity |
_version_ |
1725089772217565184 |