Characterization of low density lipoprotein receptor ligand interactions by fluorescence resonance energy transfer

The low density lipoprotein receptor (LDLR) is the prototype of a family of cell surface receptors involved in a wide range of biological processes. A soluble low density lipoprotein receptor (sLDLR) and a tryptophan (Trp)-deficient variant human apolipoprotein E3 (apoE3) N-terminal domain (NT) were...

Full description

Bibliographic Details
Main Authors: Taichi Yamamoto, Johanne Lamoureux, Robert O. Ryan
Format: Article
Language:English
Published: Elsevier 2006-05-01
Series:Journal of Lipid Research
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0022227520332582
Description
Summary:The low density lipoprotein receptor (LDLR) is the prototype of a family of cell surface receptors involved in a wide range of biological processes. A soluble low density lipoprotein receptor (sLDLR) and a tryptophan (Trp)-deficient variant human apolipoprotein E3 (apoE3) N-terminal domain (NT) were used in binding studies. The sole cysteine in apoE3-NT was covalently modified with an extrinsic fluorescence probe, N-(iodoacetyl)-N′-(5-sulfo-1-napthyl)ethylenediamine (AEDANS), and the protein was complexed with lipid. Incubation of sLDLR with AEDANS-Trp-null apoE3-NT dimyristoylphosphatidylcholine (DMPC) disks, but not lipid-free AEDANS-apoE, induced an enhancement in AEDANS fluorescence emission intensity (excitation, 280 nm) consistent with intermolecular energy transfer from excited Trp in sLDLR to receptor-bound apoE. Ligand binding to sLDLR required calcium and was saturable. In competition binding assays, unlabeled apoE3-NT DMPC inhibited AEDANS-apoE DMPC binding to sLDLR more effectively than low density lipoprotein. Fluorescence changes in this system reflected pH-dependent ligand binding and release from sLDLR consistent with models derived from the X-ray crystal structure of the receptor at endosomal pH. Intermolecular energy transfer from excited Trp in LDLR family members to fluorescently tagged ligands represents a sensitive and convenient assay for the characterization of the myriad molecular interactions ascribed to this family of receptor.
ISSN:0022-2275