Summary: | Summary: Efficiency of reprogramming of human cells into induced pluripotent stem cells (iPSCs) has remained low. We report that individual adult human CD49f+ long-term hematopoietic stem cells (LT-HSCs) can be reprogrammed into iPSCs at close to 50% efficiency using Sendai virus transduction. This exquisite sensitivity to reprogramming is specific to LT-HSCs, since it progressively decreases in committed progenitors. LT-HSC reprogramming can follow multiple paths and is most efficient when transduction is performed after the cells have exited G0. Sequencing of 75 paired skin fibroblasts/LT-HSC samples collected from nine individuals revealed that LT-HSCs contain a lower load of somatic single-nucleotide variants (SNVs) and indels than skin fibroblasts and accumulate about 12 SNVs/year. Mutation analysis revealed that LT-HSCs and fibroblasts have very different somatic mutation signatures and that somatic mutations in iPSCs generally exist prior to reprogramming. LT-HSCs may become the preferred cell source for the production of clinical-grade iPSCs. : Wang et al. show that single adult human long-term hematopoietic stem cells can be reprogrammed into induced pluripotent stem cells at close to 50% efficiency and contain fewer somatic single-nucleotide variants and indels than skin fibroblasts. They may become the preferred source for the production of clinical-grade iPSCs. Keywords: long-term hematopoietic stem cells, reprogramming, induced pluripotent stem cells, skin fibroblasts, somatic mutation
|