Dynamical properties of maps derived from maps with strong negative Schwarzian derivative

A strong Schwarzian derivative is defined, and it is shown that the convolution of a function with a map from an interval into itself having negative strong Schwarzian derivative is a function with negative Schwarzian derivative. Such convolutions have 0 as a stable periodic point and at most one ot...

Full description

Bibliographic Details
Main Author: Abraham Boyarsky
Format: Article
Language:English
Published: Hindawi Limited 1984-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S016117128400082X
Description
Summary:A strong Schwarzian derivative is defined, and it is shown that the convolution of a function with a map from an interval into itself having negative strong Schwarzian derivative is a function with negative Schwarzian derivative. Such convolutions have 0 as a stable periodic point and at most one other stable periodic orbit in the interior of the domain.
ISSN:0161-1712
1687-0425