Numerical Solutions Caused by DGJIM and ADM Methods for Multi-Term Fractional BVP Involving the Generalized <i>ψ</i>-RL-Operators

In this research study, we establish some necessary conditions to check the uniqueness-existence of solutions for a general multi-term <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semanti...

Full description

Bibliographic Details
Main Authors: Shahram Rezapour, Sina Etemad, Brahim Tellab, Praveen Agarwal, Juan Luis Garcia Guirao
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/4/532
Description
Summary:In this research study, we establish some necessary conditions to check the uniqueness-existence of solutions for a general multi-term <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-fractional differential equation via generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-integral boundary conditions with respect to the generalized asymmetric operators. To arrive at such purpose, we utilize a procedure based on the fixed-point theory. We follow our study by suggesting two numerical algorithms called the Dafterdar-Gejji and Jafari method (DGJIM) and the Adomian decomposition method (ADM) techniques in which a series of approximate solutions converge to the exact ones of the given <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-RLFBVP and the equivalent <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-integral equation. To emphasize for the compatibility and the effectiveness of these numerical algorithms, we end this investigation by providing some examples showing the behavior of the exact solution of the existing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-RLFBVP compared with the approximate ones caused by DGJIM and ADM techniques graphically.
ISSN:2073-8994