Active Control of Low-Frequency Noise through a Single Top-Hung Window in a Full-Sized Room

The push for greater urban sustainability has increased the urgency of the search for noise mitigation solutions that allow for natural ventilation into buildings. Although a viable active noise control (ANC) solution with up to 10 dB of global attenuation between 100 Hz and 1000 Hz was previously d...

Full description

Bibliographic Details
Main Authors: Bhan Lam, Dongyuan Shi, Valiantsin Belyi, Shulin Wen, Woon-Seng Gan, Kelvin Li, Irene Lee
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/19/6817
Description
Summary:The push for greater urban sustainability has increased the urgency of the search for noise mitigation solutions that allow for natural ventilation into buildings. Although a viable active noise control (ANC) solution with up to 10 dB of global attenuation between 100 Hz and 1000 Hz was previously developed for an open window, it had limited low-frequency performance below 300 Hz, owing to the small loudspeakers used. To improve the low-frequency attenuation, four passive radiator-based speakers were affixed around the opening of a top-hung ventilation window. The active control performance between 100 Hz and 700 Hz on a single top-hung window in a full-sized mock-up apartment room was examined. Active attenuation came close to the performance of the passive insulation provided by fully closing the window for expressway traffic and motorbike passing noise types. For a jet aircraft flyby, the performance of active attenuation with the window fully opened was similar to that of passive insulation with fully closed windows. In the case of low-frequency compressor noise, active attenuation’s performance was significantly better than the passive insulation. Overall, between 8 dB and 12 dB of active attenuation was achieved directly in front of the window opening, and up to 10.5 dB of attenuation was achieved across the entire room.
ISSN:2076-3417