Summary: | Lithium batteries are used for frequency regulation in power systems because of their fast response and high efficiency. Lithium batteries have different life characteristics depending on their type, and it is necessary to set the optimal state-of-charge (SOC) operating range considering these characteristics to obtain the maximum gain. In general, narrowing the operating range increases the service life but may lower the performance of charging and discharging operations in response to frequency fluctuations, and vice versa. We present performance assessment indicators that consider charging and discharging due to frequency variations and lifespan of the batteries. However, to evaluate the performance, while reflecting the non-linear life characteristics of lithium batteries, simulating the entire operation is necessary, which requires a long calculation time. Therefore, we propose a master–slave parallel genetic algorithm to derive the optimal SOC operating range with reduced calculation time. A simulation program was implemented to evaluate the computational performance that determines the optimal SOC range. The proposed method reduces the calculation time while considering the non-linear life characteristics of lithium batteries. It was confirmed that a more accurate SOC operating range could be calculated by simulating the entire life span.
|