Variability in glacier albedo and links to annual mass balance for the gardens of Eden and Allah, Southern Alps, New Zealand
<p>The gardens of Eden and Allah (GoEA) are two of New Zealand's largest ice fields. However, their remote location and protected conservation status have limited access and complicated monitoring and research efforts. To improve our understanding of the spatial and temporal changes in ma...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-10-01
|
Series: | The Cryosphere |
Online Access: | https://tc.copernicus.org/articles/14/3425/2020/tc-14-3425-2020.pdf |
id |
doaj-ae820bd5b66046d78ab3580afc82211c |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A. J. Dowson A. J. Dowson P. Sirguey N. J. Cullen |
spellingShingle |
A. J. Dowson A. J. Dowson P. Sirguey N. J. Cullen Variability in glacier albedo and links to annual mass balance for the gardens of Eden and Allah, Southern Alps, New Zealand The Cryosphere |
author_facet |
A. J. Dowson A. J. Dowson P. Sirguey N. J. Cullen |
author_sort |
A. J. Dowson |
title |
Variability in glacier albedo and links to annual mass balance for the gardens of Eden and Allah, Southern Alps, New Zealand |
title_short |
Variability in glacier albedo and links to annual mass balance for the gardens of Eden and Allah, Southern Alps, New Zealand |
title_full |
Variability in glacier albedo and links to annual mass balance for the gardens of Eden and Allah, Southern Alps, New Zealand |
title_fullStr |
Variability in glacier albedo and links to annual mass balance for the gardens of Eden and Allah, Southern Alps, New Zealand |
title_full_unstemmed |
Variability in glacier albedo and links to annual mass balance for the gardens of Eden and Allah, Southern Alps, New Zealand |
title_sort |
variability in glacier albedo and links to annual mass balance for the gardens of eden and allah, southern alps, new zealand |
publisher |
Copernicus Publications |
series |
The Cryosphere |
issn |
1994-0416 1994-0424 |
publishDate |
2020-10-01 |
description |
<p>The gardens of Eden and Allah (GoEA) are two of New Zealand's
largest ice fields. However, their remote location and protected conservation
status have limited access and complicated monitoring and research efforts.
To improve our understanding of the spatial and temporal changes in mass
balance of these unique ice fields, observations from the Moderate Resolution
Imaging Spectroradiometer (MODIS) sensors are used to monitor annual minimum
glacier-wide albedo (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mover accent="true"><mi mathvariant="italic">α</mi><mo mathvariant="normal">¯</mo></mover><mi mathvariant="normal">yr</mi><mi mathvariant="normal">min</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="5b9644d0a10a742f5d1b5314053dbb19"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-14-3425-2020-ie00001.svg" width="22pt" height="17pt" src="tc-14-3425-2020-ie00001.png"/></svg:svg></span></span>) over the
period 2000–2018. The <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mover accent="true"><mi mathvariant="italic">α</mi><mo mathvariant="normal">¯</mo></mover><mi mathvariant="normal">yr</mi><mi mathvariant="normal">min</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="e71f55b57f6b5740ca2812e509375d2b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-14-3425-2020-ie00002.svg" width="22pt" height="17pt" src="tc-14-3425-2020-ie00002.png"/></svg:svg></span></span> for 12
individual glaciers ranges between 0.42 and 0.70 and can occur as early as
mid-January and as late as the end of April. The evolution of the timing of
<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mover accent="true"><mi mathvariant="italic">α</mi><mo mathvariant="normal">¯</mo></mover><mi mathvariant="normal">yr</mi><mi mathvariant="normal">min</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="74b1418ac1d40454afda1cb8e050fb72"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-14-3425-2020-ie00003.svg" width="22pt" height="17pt" src="tc-14-3425-2020-ie00003.png"/></svg:svg></span></span> indicates a shift to later in
the summer over the 19-year period on 10 of the 12 glaciers. However, there
is only a weak relationship between the delay in timing and the magnitude of
<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mover accent="true"><mi mathvariant="italic">α</mi><mo mathvariant="normal">¯</mo></mover><mi mathvariant="normal">yr</mi><mi mathvariant="normal">min</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="c9044c72caa8cb285357105790a58158"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-14-3425-2020-ie00004.svg" width="22pt" height="17pt" src="tc-14-3425-2020-ie00004.png"/></svg:svg></span></span>, which implies that albedo is
not necessarily lower if it is delayed. The largest negative departures in
<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mover accent="true"><mi mathvariant="italic">α</mi><mo mathvariant="normal">¯</mo></mover><mi mathvariant="normal">yr</mi><mi mathvariant="normal">min</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="07e0dc1092b37793453cf3d82f29616e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-14-3425-2020-ie00005.svg" width="22pt" height="17pt" src="tc-14-3425-2020-ie00005.png"/></svg:svg></span></span> (lower-than-average albedo) are
consistent with high snowline altitudes (SLAs) relative to the long-term
average as determined from the End of Summer Snowline (EOSS) survey, which
has been the benchmark for monitoring glaciers in the Southern Alps for over
40 years. While the record of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mover accent="true"><mi mathvariant="italic">α</mi><mo mathvariant="normal">¯</mo></mover><mi mathvariant="normal">yr</mi><mi mathvariant="normal">min</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="d88a968b71c96142c69d9b8aef70780c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-14-3425-2020-ie00006.svg" width="22pt" height="17pt" src="tc-14-3425-2020-ie00006.png"/></svg:svg></span></span>
for Vertebrae Col 25, an index glacier of the EOSS survey and one of the
GoEA glaciers, explains less than half of the variability observed in the
corresponding EOSS SLA (<span class="inline-formula"><i>R</i><sup>2</sup>=0.43</span>, <span class="inline-formula"><i>p</i>=0.003</span>), the relationship is
stronger when compared to other GoEA glaciers. Angel Glacier has the
strongest relationship with EOSS observations at Vertebrae Col 25,
accounting for 69 % of its variance (<span class="inline-formula"><i>p</i><0.001</span>). A key advantage
in using the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mover accent="true"><mi mathvariant="italic">α</mi><mo mathvariant="normal">¯</mo></mover><mi mathvariant="normal">yr</mi><mi mathvariant="normal">min</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="f8fd62372c4e30353ed5144b83dde2f2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-14-3425-2020-ie00007.svg" width="22pt" height="17pt" src="tc-14-3425-2020-ie00007.png"/></svg:svg></span></span> approach is that
it enables variability in the response of individual glaciers to be
explored, revealing that topographic setting plays a key role in addition to
the regional climate signal. The observed variability in individual glacier
response at the scale of the GoEA contrasts with the high consistency of
responses found by the EOSS record across the Southern Alps and challenges
the suggestion that New Zealand glaciers behave as a unified climatic
unit. MODIS imagery acquired from the Terra and Aqua platforms also
provides insights about the spatial and temporal variability in clouds. The
frequency of clouds in pixels west of the Main Divide is as high as 90 %
during summer months and reaches a minimum of 35 % in some locations in
winter. These complex cloud interactions deserve further attention as they
are likely a contributing factor in controlling the spatial and temporal
variability in glacier response observed in the GoEA.</p> |
url |
https://tc.copernicus.org/articles/14/3425/2020/tc-14-3425-2020.pdf |
work_keys_str_mv |
AT ajdowson variabilityinglacieralbedoandlinkstoannualmassbalanceforthegardensofedenandallahsouthernalpsnewzealand AT ajdowson variabilityinglacieralbedoandlinkstoannualmassbalanceforthegardensofedenandallahsouthernalpsnewzealand AT psirguey variabilityinglacieralbedoandlinkstoannualmassbalanceforthegardensofedenandallahsouthernalpsnewzealand AT njcullen variabilityinglacieralbedoandlinkstoannualmassbalanceforthegardensofedenandallahsouthernalpsnewzealand |
_version_ |
1724850429964058624 |
spelling |
doaj-ae820bd5b66046d78ab3580afc82211c2020-11-25T02:25:45ZengCopernicus PublicationsThe Cryosphere1994-04161994-04242020-10-01143425344810.5194/tc-14-3425-2020Variability in glacier albedo and links to annual mass balance for the gardens of Eden and Allah, Southern Alps, New ZealandA. J. Dowson0A. J. Dowson1P. Sirguey2N. J. Cullen3School of Geography, University of Otago, Dunedin, 9016, New ZealandNational School of Surveying, University of Otago, Dunedin, 9016, New ZealandNational School of Surveying, University of Otago, Dunedin, 9016, New ZealandSchool of Geography, University of Otago, Dunedin, 9016, New Zealand<p>The gardens of Eden and Allah (GoEA) are two of New Zealand's largest ice fields. However, their remote location and protected conservation status have limited access and complicated monitoring and research efforts. To improve our understanding of the spatial and temporal changes in mass balance of these unique ice fields, observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors are used to monitor annual minimum glacier-wide albedo (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mover accent="true"><mi mathvariant="italic">α</mi><mo mathvariant="normal">¯</mo></mover><mi mathvariant="normal">yr</mi><mi mathvariant="normal">min</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="5b9644d0a10a742f5d1b5314053dbb19"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-14-3425-2020-ie00001.svg" width="22pt" height="17pt" src="tc-14-3425-2020-ie00001.png"/></svg:svg></span></span>) over the period 2000–2018. The <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mover accent="true"><mi mathvariant="italic">α</mi><mo mathvariant="normal">¯</mo></mover><mi mathvariant="normal">yr</mi><mi mathvariant="normal">min</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="e71f55b57f6b5740ca2812e509375d2b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-14-3425-2020-ie00002.svg" width="22pt" height="17pt" src="tc-14-3425-2020-ie00002.png"/></svg:svg></span></span> for 12 individual glaciers ranges between 0.42 and 0.70 and can occur as early as mid-January and as late as the end of April. The evolution of the timing of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mover accent="true"><mi mathvariant="italic">α</mi><mo mathvariant="normal">¯</mo></mover><mi mathvariant="normal">yr</mi><mi mathvariant="normal">min</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="74b1418ac1d40454afda1cb8e050fb72"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-14-3425-2020-ie00003.svg" width="22pt" height="17pt" src="tc-14-3425-2020-ie00003.png"/></svg:svg></span></span> indicates a shift to later in the summer over the 19-year period on 10 of the 12 glaciers. However, there is only a weak relationship between the delay in timing and the magnitude of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mover accent="true"><mi mathvariant="italic">α</mi><mo mathvariant="normal">¯</mo></mover><mi mathvariant="normal">yr</mi><mi mathvariant="normal">min</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="c9044c72caa8cb285357105790a58158"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-14-3425-2020-ie00004.svg" width="22pt" height="17pt" src="tc-14-3425-2020-ie00004.png"/></svg:svg></span></span>, which implies that albedo is not necessarily lower if it is delayed. The largest negative departures in <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mover accent="true"><mi mathvariant="italic">α</mi><mo mathvariant="normal">¯</mo></mover><mi mathvariant="normal">yr</mi><mi mathvariant="normal">min</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="07e0dc1092b37793453cf3d82f29616e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-14-3425-2020-ie00005.svg" width="22pt" height="17pt" src="tc-14-3425-2020-ie00005.png"/></svg:svg></span></span> (lower-than-average albedo) are consistent with high snowline altitudes (SLAs) relative to the long-term average as determined from the End of Summer Snowline (EOSS) survey, which has been the benchmark for monitoring glaciers in the Southern Alps for over 40 years. While the record of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mover accent="true"><mi mathvariant="italic">α</mi><mo mathvariant="normal">¯</mo></mover><mi mathvariant="normal">yr</mi><mi mathvariant="normal">min</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="d88a968b71c96142c69d9b8aef70780c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-14-3425-2020-ie00006.svg" width="22pt" height="17pt" src="tc-14-3425-2020-ie00006.png"/></svg:svg></span></span> for Vertebrae Col 25, an index glacier of the EOSS survey and one of the GoEA glaciers, explains less than half of the variability observed in the corresponding EOSS SLA (<span class="inline-formula"><i>R</i><sup>2</sup>=0.43</span>, <span class="inline-formula"><i>p</i>=0.003</span>), the relationship is stronger when compared to other GoEA glaciers. Angel Glacier has the strongest relationship with EOSS observations at Vertebrae Col 25, accounting for 69 % of its variance (<span class="inline-formula"><i>p</i><0.001</span>). A key advantage in using the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mover accent="true"><mi mathvariant="italic">α</mi><mo mathvariant="normal">¯</mo></mover><mi mathvariant="normal">yr</mi><mi mathvariant="normal">min</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="f8fd62372c4e30353ed5144b83dde2f2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-14-3425-2020-ie00007.svg" width="22pt" height="17pt" src="tc-14-3425-2020-ie00007.png"/></svg:svg></span></span> approach is that it enables variability in the response of individual glaciers to be explored, revealing that topographic setting plays a key role in addition to the regional climate signal. The observed variability in individual glacier response at the scale of the GoEA contrasts with the high consistency of responses found by the EOSS record across the Southern Alps and challenges the suggestion that New Zealand glaciers behave as a unified climatic unit. MODIS imagery acquired from the Terra and Aqua platforms also provides insights about the spatial and temporal variability in clouds. The frequency of clouds in pixels west of the Main Divide is as high as 90 % during summer months and reaches a minimum of 35 % in some locations in winter. These complex cloud interactions deserve further attention as they are likely a contributing factor in controlling the spatial and temporal variability in glacier response observed in the GoEA.</p>https://tc.copernicus.org/articles/14/3425/2020/tc-14-3425-2020.pdf |